Show simple item record

contributor authorChen
contributor authorWei;Fuge
contributor authorMark
date accessioned2017-12-30T11:43:16Z
date available2017-12-30T11:43:16Z
date copyright10/2/2017 12:00:00 AM
date issued2017
identifier issn1050-0472
identifier othermd_139_11_111405.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242762
description abstractTo solve a design problem, sometimes it is necessary to identify the feasible design space. For design spaces with implicit constraints, sampling methods are usually used. These methods typically bound the design space; that is, limit the range of design variables. But bounds that are too small will fail to cover all possible designs, while bounds that are too large will waste sampling budget. This paper tries to solve the problem of efficiently discovering (possibly disconnected) feasible domains in an unbounded design space. We propose a data-driven adaptive sampling technique—ε-margin sampling, which learns the domain boundary of feasible designs and also expands our knowledge on the design space as available budget increases. This technique is data-efficient, in that it makes principled probabilistic trade-offs between refining existing domain boundaries versus expanding the design space. We demonstrate that this method can better identify feasible domains on standard test functions compared to both random and active sampling (via uncertainty sampling). However, a fundamental problem when applying adaptive sampling to real world designs is that designs often have high dimensionality and thus require (in the worst case) exponentially more samples per dimension. We show how coupling design manifolds with ε-margin sampling allows us to actively expand high-dimensional design spaces without incurring this exponential penalty. We demonstrate this on real-world examples of glassware and bottle design, where our method discovers designs that have different appearance and functionality from its initial design set.
publisherThe American Society of Mechanical Engineers (ASME)
titleBeyond the Known: Detecting Novel Feasible Domains Over an Unbounded Design Space
typeJournal Paper
journal volume139
journal issue11
journal titleJournal of Mechanical Design
identifier doi10.1115/1.4037306
journal fristpage111405
journal lastpage111405-10
treeJournal of Mechanical Design:;2017:;volume( 139 ):;issue: 011
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record