Show simple item record

contributor authorAnandita
contributor authorS.;Mote
contributor authorRakesh G.;Singh
contributor authorRamesh
date accessioned2017-12-30T11:43:14Z
date available2017-12-30T11:43:14Z
date copyright11/2/2017 12:00:00 AM
date issued2017
identifier issn1087-1357
identifier othermanu_139_12_121013.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242751
description abstractWith the rising trend of miniaturization in modern industries, micro manufacturing processes have made a significant position in the manufacturing domain. Demands of high precision along with super finish of the final machined product have started rising. Grinding, being largely considered as a finishing operation, has large potential to cater to such requirements of micro manufacturing. However, stochastic nature of the grinding wheel topography results in a high degree of variation in the output responses especially in the case of microgrinding. With an aim to obtain a good and predictable surface finish in brittle materials, the current study aims at developing a surface generation model for wall grinding of hard and brittle materials using a microgrinding tool. Tool topographical features such as grit protrusion height, intergrit spacing, and grit distribution on the tool tip of a microgrinding pin have been calculated from the known mesh size of the grits used during tool manufacturing. Kinematic analysis of surface grinding has been extended to the case of wall grinding and each grit trajectory has been predicted. The kinematic analysis has been done by taking into consideration the effect of tool topographical features and the process parameters on the ground surface topography. Detailed analysis of the interaction of the grit trajectories is done to predict the final surface profile. The predicted surface roughness has been validated with the experimental results to provide an insight to the surface quality that can be produced for a given tool topography.
publisherThe American Society of Mechanical Engineers (ASME)
titleStochastic Analysis of Microgrinding Tool Topography and Its Role in Surface Generation
typeJournal Paper
journal volume139
journal issue12
journal titleJournal of Manufacturing Science and Engineering
identifier doi10.1115/1.4038056
journal fristpage121013
journal lastpage121013-14
treeJournal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record