YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Structural Reliability Analysis Including Correlated Random Variables Based on Third-Moment Transformation

    Source: Journal of Structural Engineering:;2017:;Volume ( 143 ):;issue: 008
    Author:
    Zhao-Hui Lu
    ,
    Chao-Huang Cai
    ,
    Yan-Gang Zhao
    DOI: 10.1061/(ASCE)ST.1943-541X.0001801
    Publisher: American Society of Civil Engineers
    Abstract: In structural reliability analysis, the input variables are often nonnormal and correlated. A procedure for efficient normal transformation, i.e., transforming dependent nonnormal random variables into independent standard normal ones, is often required. In general, Rosenblatt transformation is available to realize the normal transformation when the joint probability density function (PDF) of basic random variables is available and Nataf transformation can be used when the marginal PDFs and correlation coefficients are known. However, the joint PDF and marginal PDFs of some random variables are often unknown in practice, and the probabilistic characteristics of these variables are easier to be expressed using the statistical moments and correlation matrix. It is in this regard that the objective of the present paper is to develop a methodology for normal transformation including correlated random variables with unknown joint PDF and marginal PDFs. Based on the third-moment transformation technique for transforming independent nonnormal random variables into independent standard normal ones, the third-moment transformation is further developed for transforming the correlated variables including unknown joint PDF and marginal PDFs into independent standard normal variables. A first-order reliability method for structural reliability analysis including correlated random variables with unknown joint PDF and marginal PDFs is developed based on the proposed transformation. Using the proposed method, the normal transformation and reliability analysis can also be achieved for correlated nonnormal random variables with knowledge of only the statistical moments and correlation matrix. The simplicity and efficiency of the proposed method is further demonstrated through several numerical examples.
    • Download: (390.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Structural Reliability Analysis Including Correlated Random Variables Based on Third-Moment Transformation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4242614
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorZhao-Hui Lu
    contributor authorChao-Huang Cai
    contributor authorYan-Gang Zhao
    date accessioned2017-12-16T09:24:31Z
    date available2017-12-16T09:24:31Z
    date issued2017
    identifier other%28ASCE%29ST.1943-541X.0001801.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242614
    description abstractIn structural reliability analysis, the input variables are often nonnormal and correlated. A procedure for efficient normal transformation, i.e., transforming dependent nonnormal random variables into independent standard normal ones, is often required. In general, Rosenblatt transformation is available to realize the normal transformation when the joint probability density function (PDF) of basic random variables is available and Nataf transformation can be used when the marginal PDFs and correlation coefficients are known. However, the joint PDF and marginal PDFs of some random variables are often unknown in practice, and the probabilistic characteristics of these variables are easier to be expressed using the statistical moments and correlation matrix. It is in this regard that the objective of the present paper is to develop a methodology for normal transformation including correlated random variables with unknown joint PDF and marginal PDFs. Based on the third-moment transformation technique for transforming independent nonnormal random variables into independent standard normal ones, the third-moment transformation is further developed for transforming the correlated variables including unknown joint PDF and marginal PDFs into independent standard normal variables. A first-order reliability method for structural reliability analysis including correlated random variables with unknown joint PDF and marginal PDFs is developed based on the proposed transformation. Using the proposed method, the normal transformation and reliability analysis can also be achieved for correlated nonnormal random variables with knowledge of only the statistical moments and correlation matrix. The simplicity and efficiency of the proposed method is further demonstrated through several numerical examples.
    publisherAmerican Society of Civil Engineers
    titleStructural Reliability Analysis Including Correlated Random Variables Based on Third-Moment Transformation
    typeJournal Paper
    journal volume143
    journal issue8
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001801
    treeJournal of Structural Engineering:;2017:;Volume ( 143 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian