YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Finite-Element Analysis of Reinforced Concrete Plates Subjected to Repeated Impact Loads

    Source: Journal of Structural Engineering:;2017:;Volume ( 143 ):;issue: 009
    Author:
    H. Othman
    ,
    H. Marzouk
    DOI: 10.1061/(ASCE)ST.1943-541X.0001852
    Publisher: American Society of Civil Engineers
    Abstract: This paper adapts and validates a three-dimensional finite element (3D-FE) model of reinforced concrete (RC) plates subjected to repeated low-velocity impact loads that were formerly tested by the authors. A brief description of the experimental tests that are required to facilitate the finite element (FE) modeling is provided. Numerical simulations have been performed using an explicit FE commercial code. A concrete damage plasticity (CDP) model is adapted to consider nonlinearity, stiffness degradation, and strain rate effects of concrete. The classical metal plasticity model is used to define the full response of the steel reinforcement. CDP parameters are calibrated based on the test results of a control specimen. Thereafter, the predictive capability of the calibrated model has been demonstrated by simulating different plates with varied steel reinforcement ratios and arrangements. The numerical results showed that computed responses are sensitive to CDP parameters related to the plastic expansion, and damage parameters. Additionally, strain rate effect inclusion is critical to properly predict the punching shear failure pattern. Results confirmed also the ability of the calibrated model to predict the response of RC structures under low-velocity loading conditions.
    • Download: (4.454Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Finite-Element Analysis of Reinforced Concrete Plates Subjected to Repeated Impact Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4242562
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorH. Othman
    contributor authorH. Marzouk
    date accessioned2017-12-16T09:24:23Z
    date available2017-12-16T09:24:23Z
    date issued2017
    identifier other%28ASCE%29ST.1943-541X.0001852.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242562
    description abstractThis paper adapts and validates a three-dimensional finite element (3D-FE) model of reinforced concrete (RC) plates subjected to repeated low-velocity impact loads that were formerly tested by the authors. A brief description of the experimental tests that are required to facilitate the finite element (FE) modeling is provided. Numerical simulations have been performed using an explicit FE commercial code. A concrete damage plasticity (CDP) model is adapted to consider nonlinearity, stiffness degradation, and strain rate effects of concrete. The classical metal plasticity model is used to define the full response of the steel reinforcement. CDP parameters are calibrated based on the test results of a control specimen. Thereafter, the predictive capability of the calibrated model has been demonstrated by simulating different plates with varied steel reinforcement ratios and arrangements. The numerical results showed that computed responses are sensitive to CDP parameters related to the plastic expansion, and damage parameters. Additionally, strain rate effect inclusion is critical to properly predict the punching shear failure pattern. Results confirmed also the ability of the calibrated model to predict the response of RC structures under low-velocity loading conditions.
    publisherAmerican Society of Civil Engineers
    titleFinite-Element Analysis of Reinforced Concrete Plates Subjected to Repeated Impact Loads
    typeJournal Paper
    journal volume143
    journal issue9
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0001852
    treeJournal of Structural Engineering:;2017:;Volume ( 143 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian