YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improved Method for Estimating the Ocean Tide Loading Displacement Parameters by GNSS Precise Point Positioning and Harmonic Analysis

    Source: Journal of Surveying Engineering:;2017:;Volume ( 143 ):;issue: 004
    Author:
    Rui Tu
    ,
    Hong Zhao
    ,
    Pengfei Zhang
    ,
    Jinhai Liu
    ,
    Xiaochun Lu
    DOI: 10.1061/(ASCE)SU.1943-5428.0000222
    Publisher: American Society of Civil Engineers
    Abstract: Site displacements caused by ocean tide loading (OTL) can reach more than several centimeters vertically, particularly in coastal regions. An ocean tide model typically is used to correct OTL effects, but these model predictions cannot satisfy accuracy requirements because of irregularities. The Global Navigation Satellite System (GNSS) is influenced by OTL and provides a way to measure OTL displacements precisely. This study develops an improved method for estimating OTL-displacement parameters in which the effects of three-dimensional (3D) OTL displacements are estimated as unknown parameters at each epoch by precise point positioning (PPP); then, the amplitudes and phase lags of eight principal constituents are extracted from the time series of the OTL displacements using the harmonic analysis method. 3D OTL displacements of eight constituents at 12 sites in Hong Kong with 8 years of continuous GNSS observations are calculated. The convergence speed of these constituents indicates that the O1, Q1, N2, and M2 constituents are much faster than the K1, P1, K2, and S2 constituents. In addition, the PPP-derived OTL estimates are compared with the predictions from six advanced global ocean tide models, which were modified by the osu.chinasea.2010 local tide model. The results show that the constituents estimated by the improved method are most consistent with the model-predicted values. RMS misfits between the PPP model are small for the N2, M2, Q1, and P1 constituents (less than 1.5 mm in the east component, 2.0 mm in the north component, and 1.9 mm in the vertical component). The S2 and K1 constituents show relatively large misfits of up to 4.3 mm.
    • Download: (1.651Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improved Method for Estimating the Ocean Tide Loading Displacement Parameters by GNSS Precise Point Positioning and Harmonic Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4242461
    Collections
    • Journal of Surveying Engineering

    Show full item record

    contributor authorRui Tu
    contributor authorHong Zhao
    contributor authorPengfei Zhang
    contributor authorJinhai Liu
    contributor authorXiaochun Lu
    date accessioned2017-12-16T09:24:03Z
    date available2017-12-16T09:24:03Z
    date issued2017
    identifier other%28ASCE%29SU.1943-5428.0000222.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242461
    description abstractSite displacements caused by ocean tide loading (OTL) can reach more than several centimeters vertically, particularly in coastal regions. An ocean tide model typically is used to correct OTL effects, but these model predictions cannot satisfy accuracy requirements because of irregularities. The Global Navigation Satellite System (GNSS) is influenced by OTL and provides a way to measure OTL displacements precisely. This study develops an improved method for estimating OTL-displacement parameters in which the effects of three-dimensional (3D) OTL displacements are estimated as unknown parameters at each epoch by precise point positioning (PPP); then, the amplitudes and phase lags of eight principal constituents are extracted from the time series of the OTL displacements using the harmonic analysis method. 3D OTL displacements of eight constituents at 12 sites in Hong Kong with 8 years of continuous GNSS observations are calculated. The convergence speed of these constituents indicates that the O1, Q1, N2, and M2 constituents are much faster than the K1, P1, K2, and S2 constituents. In addition, the PPP-derived OTL estimates are compared with the predictions from six advanced global ocean tide models, which were modified by the osu.chinasea.2010 local tide model. The results show that the constituents estimated by the improved method are most consistent with the model-predicted values. RMS misfits between the PPP model are small for the N2, M2, Q1, and P1 constituents (less than 1.5 mm in the east component, 2.0 mm in the north component, and 1.9 mm in the vertical component). The S2 and K1 constituents show relatively large misfits of up to 4.3 mm.
    publisherAmerican Society of Civil Engineers
    titleImproved Method for Estimating the Ocean Tide Loading Displacement Parameters by GNSS Precise Point Positioning and Harmonic Analysis
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleJournal of Surveying Engineering
    identifier doi10.1061/(ASCE)SU.1943-5428.0000222
    treeJournal of Surveying Engineering:;2017:;Volume ( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian