YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Determination of Position and Orientation of LiDAR Sensors on Multisensor Platforms

    Source: Journal of Surveying Engineering:;2017:;Volume ( 143 ):;issue: 004
    Author:
    Jens Hartmann
    ,
    J.-A. Paffenholz
    ,
    T. Strübing
    ,
    I. Neumann
    DOI: 10.1061/(ASCE)SU.1943-5428.0000226
    Publisher: American Society of Civil Engineers
    Abstract: The use of multisensor system (MSS) plays a key role in engineering geodesy. Because of the complexity of tasks such as industrial applications with high accuracy requirements for heterogeneous and efficient three-dimensional (3D) data acquisition, kinematic MSS are often used. Traditionally, these MSS are composed of referencing sensors and object-capturing sensors. The crucial point in a MSS setup is the determination of the mutual position and orientation [six degrees of freedom (6 DOF)] of each sensor. Within this contribution, a possibility for the determination of the 6 DOF of light detection and ranging (LiDAR) sensors in MSS is introduced. The presented approach is generally applicable and allows the 6 DOF determination of profile laser scanners. The 6 DOF and their uncertainty measures are estimated within an adjustment model by utilizing known reference geometries (RFGs). The approach is especially of interest when sensor origins are not physically available and measurable. It is generally applicable in a static or kinematic measurement environment. As an example, the approach is applied in an industrial environment with accuracy requirements of a few millimeters. The used MSS consists of a terrestrial laser scanner (object capturing) and a laser tracker (referencing). The linking component is a tracker-machine control sensor, which is attached to the laser scanner. More precisely, 6 DOF between the tracker-machine control sensor and the origin of the laser scanner have to be determined. Depending on the required accuracy of the 3D object acquisition, the determination of the 6 DOF must fulfill high accuracy requirements. Finally, the results and the accuracy of the 6 DOF determination are shown and validated with a static calibration procedure.
    • Download: (3.975Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Determination of Position and Orientation of LiDAR Sensors on Multisensor Platforms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4242457
    Collections
    • Journal of Surveying Engineering

    Show full item record

    contributor authorJens Hartmann
    contributor authorJ.-A. Paffenholz
    contributor authorT. Strübing
    contributor authorI. Neumann
    date accessioned2017-12-16T09:24:02Z
    date available2017-12-16T09:24:02Z
    date issued2017
    identifier other%28ASCE%29SU.1943-5428.0000226.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242457
    description abstractThe use of multisensor system (MSS) plays a key role in engineering geodesy. Because of the complexity of tasks such as industrial applications with high accuracy requirements for heterogeneous and efficient three-dimensional (3D) data acquisition, kinematic MSS are often used. Traditionally, these MSS are composed of referencing sensors and object-capturing sensors. The crucial point in a MSS setup is the determination of the mutual position and orientation [six degrees of freedom (6 DOF)] of each sensor. Within this contribution, a possibility for the determination of the 6 DOF of light detection and ranging (LiDAR) sensors in MSS is introduced. The presented approach is generally applicable and allows the 6 DOF determination of profile laser scanners. The 6 DOF and their uncertainty measures are estimated within an adjustment model by utilizing known reference geometries (RFGs). The approach is especially of interest when sensor origins are not physically available and measurable. It is generally applicable in a static or kinematic measurement environment. As an example, the approach is applied in an industrial environment with accuracy requirements of a few millimeters. The used MSS consists of a terrestrial laser scanner (object capturing) and a laser tracker (referencing). The linking component is a tracker-machine control sensor, which is attached to the laser scanner. More precisely, 6 DOF between the tracker-machine control sensor and the origin of the laser scanner have to be determined. Depending on the required accuracy of the 3D object acquisition, the determination of the 6 DOF must fulfill high accuracy requirements. Finally, the results and the accuracy of the 6 DOF determination are shown and validated with a static calibration procedure.
    publisherAmerican Society of Civil Engineers
    titleDetermination of Position and Orientation of LiDAR Sensors on Multisensor Platforms
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleJournal of Surveying Engineering
    identifier doi10.1061/(ASCE)SU.1943-5428.0000226
    treeJournal of Surveying Engineering:;2017:;Volume ( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian