YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Cooperative Localization of Unmanned Aerial Vehicles Using GNSS, MEMS Inertial, and UWB Sensors

    Source: Journal of Surveying Engineering:;2017:;Volume ( 143 ):;issue: 004
    Author:
    Salil Goel
    ,
    Allison Kealy
    ,
    Vassilis Gikas
    ,
    Guenther Retscher
    ,
    Charles Toth
    ,
    Dorota-Grejner Brzezinska
    ,
    Bharat Lohani
    DOI: 10.1061/(ASCE)SU.1943-5428.0000230
    Publisher: American Society of Civil Engineers
    Abstract: Cooperative networks of low-cost unmanned aerial vehicles (UAVs) are attracting researchers because of their potential to enhance UAV performance. Cooperative networks can be used in many applications, including assisted guidance and navigation, surveillance, search and rescue, disaster management, defense, mapping, precision agriculture, and mineral exploration. Such cooperative networks of UAVs can act as ad hoc networks and share information among different network nodes. Such information sharing makes these nodes more robust and efficient for the intended purpose. The location of UAVs is traditionally determined using a global navigation satellite system (GNSS), which limits the use of UAVs in regions that lack GNSS. However, the location of UAVs can be determined even in environments without GNSS through a cooperative network if a few of the nodes have access to GNSS. This is achieved by sharing the information among the nodes of the network. Information sharing in a cooperative network further results in improvement in the proportional accuracy of the nodes in cases where GNSS is available to all nodes. This study investigated a mathematical model and operational framework for cooperative localization of UAVs using GNSS, microelectromechanical systems (MEMS), inertial navigation system (INS), and UWB (ultra-wide-band) sensors under different architectures. This paper briefly discusses the practical feasibility of different distributed architectures and provides a comparison of distributed and centralized architectures. The study analyzed the proposed network using numerical simulation and investigated changes in performance with respect to different parameters. The simulation results show that the centralized architecture generally provided higher localization accuracy compared with the distributed architecture. It was also observed that reliable and consistent localization can be achieved, irrespective of the size of the network, by using a cooperative approach even if only four nodes have GNSS access in the network if there is good connectivity among the nodes. Further, the simulation results demonstrate that a cooperative approach benefits all the nodes in terms of improved localization accuracy even if all the nodes have access to GNSS.
    • Download: (4.269Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Cooperative Localization of Unmanned Aerial Vehicles Using GNSS, MEMS Inertial, and UWB Sensors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4242453
    Collections
    • Journal of Surveying Engineering

    Show full item record

    contributor authorSalil Goel
    contributor authorAllison Kealy
    contributor authorVassilis Gikas
    contributor authorGuenther Retscher
    contributor authorCharles Toth
    contributor authorDorota-Grejner Brzezinska
    contributor authorBharat Lohani
    date accessioned2017-12-16T09:24:01Z
    date available2017-12-16T09:24:01Z
    date issued2017
    identifier other%28ASCE%29SU.1943-5428.0000230.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242453
    description abstractCooperative networks of low-cost unmanned aerial vehicles (UAVs) are attracting researchers because of their potential to enhance UAV performance. Cooperative networks can be used in many applications, including assisted guidance and navigation, surveillance, search and rescue, disaster management, defense, mapping, precision agriculture, and mineral exploration. Such cooperative networks of UAVs can act as ad hoc networks and share information among different network nodes. Such information sharing makes these nodes more robust and efficient for the intended purpose. The location of UAVs is traditionally determined using a global navigation satellite system (GNSS), which limits the use of UAVs in regions that lack GNSS. However, the location of UAVs can be determined even in environments without GNSS through a cooperative network if a few of the nodes have access to GNSS. This is achieved by sharing the information among the nodes of the network. Information sharing in a cooperative network further results in improvement in the proportional accuracy of the nodes in cases where GNSS is available to all nodes. This study investigated a mathematical model and operational framework for cooperative localization of UAVs using GNSS, microelectromechanical systems (MEMS), inertial navigation system (INS), and UWB (ultra-wide-band) sensors under different architectures. This paper briefly discusses the practical feasibility of different distributed architectures and provides a comparison of distributed and centralized architectures. The study analyzed the proposed network using numerical simulation and investigated changes in performance with respect to different parameters. The simulation results show that the centralized architecture generally provided higher localization accuracy compared with the distributed architecture. It was also observed that reliable and consistent localization can be achieved, irrespective of the size of the network, by using a cooperative approach even if only four nodes have GNSS access in the network if there is good connectivity among the nodes. Further, the simulation results demonstrate that a cooperative approach benefits all the nodes in terms of improved localization accuracy even if all the nodes have access to GNSS.
    publisherAmerican Society of Civil Engineers
    titleCooperative Localization of Unmanned Aerial Vehicles Using GNSS, MEMS Inertial, and UWB Sensors
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleJournal of Surveying Engineering
    identifier doi10.1061/(ASCE)SU.1943-5428.0000230
    treeJournal of Surveying Engineering:;2017:;Volume ( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian