YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Highly Efficient Selective Assembly Method of Horizontal Stabilizer based on Metamodeling and Particle Swarm Optimization

    Source: Journal of Aerospace Engineering:;2015:;Volume ( 028 ):;issue: 004
    Author:
    Hua Wang
    DOI: 10.1061/(ASCE)AS.1943-5525.0000424
    Publisher: American Society of Civil Engineers
    Abstract: Selective assembly is a cost-effective approach for reducing the overall variation and thus improving the quality of an assembled product. Traditional selective assembly requires quite a large number of finite-element analysis (FEA) runs and consequently is rather time consuming when considering every part’s deviations. The paper presents the highly efficient selective assembly method that assists operators in horizontal stabilizer assembling while considering the parts’ fabrication deviations. Metamodeling is employed to build the input–output functions from FEA results. The hybrid metamodel consisted of four metamodels and is constructed to express the mapping relationship between fabrication deviations and assembly distortions. Cross validation of metamodels is conducted using 27 FEA simulations. The quantitative selective assembly suggestion, that is, the selective assembly table, is obtained using the hybrid metamodels and particle swarm optimization (PSO) algorithm. The optimal assembly of the trailing edge is considered to illustrate the computational efficiency of the method. The results have shown that the proposed method preserve final assembly precision with high efficiency. The selective assembly procedures outlined in this paper will enhance the understanding of the compliant components deformation in assembly and help systematically improving the precision control efficiency in the civil aircraft industry.
    • Download: (6.738Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Highly Efficient Selective Assembly Method of Horizontal Stabilizer based on Metamodeling and Particle Swarm Optimization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4242142
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorHua Wang
    date accessioned2017-12-16T09:22:55Z
    date available2017-12-16T09:22:55Z
    date issued2015
    identifier other%28ASCE%29AS.1943-5525.0000424.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242142
    description abstractSelective assembly is a cost-effective approach for reducing the overall variation and thus improving the quality of an assembled product. Traditional selective assembly requires quite a large number of finite-element analysis (FEA) runs and consequently is rather time consuming when considering every part’s deviations. The paper presents the highly efficient selective assembly method that assists operators in horizontal stabilizer assembling while considering the parts’ fabrication deviations. Metamodeling is employed to build the input–output functions from FEA results. The hybrid metamodel consisted of four metamodels and is constructed to express the mapping relationship between fabrication deviations and assembly distortions. Cross validation of metamodels is conducted using 27 FEA simulations. The quantitative selective assembly suggestion, that is, the selective assembly table, is obtained using the hybrid metamodels and particle swarm optimization (PSO) algorithm. The optimal assembly of the trailing edge is considered to illustrate the computational efficiency of the method. The results have shown that the proposed method preserve final assembly precision with high efficiency. The selective assembly procedures outlined in this paper will enhance the understanding of the compliant components deformation in assembly and help systematically improving the precision control efficiency in the civil aircraft industry.
    publisherAmerican Society of Civil Engineers
    titleHighly Efficient Selective Assembly Method of Horizontal Stabilizer based on Metamodeling and Particle Swarm Optimization
    typeJournal Paper
    journal volume28
    journal issue4
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000424
    treeJournal of Aerospace Engineering:;2015:;Volume ( 028 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian