YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Dynamic Modeling for a Flexible Laminated Composite Appendage Attached to a Spacecraft Body Undergoing Deployment and Locking Motions

    Source: Journal of Aerospace Engineering:;2016:;Volume ( 029 ):;issue: 005
    Author:
    Bin Di You
    ,
    Jian Min Wen
    ,
    Guang Yu Zhang
    ,
    Yang Zhao
    DOI: 10.1061/(ASCE)AS.1943-5525.0000570
    Publisher: American Society of Civil Engineers
    Abstract: A nonlinear dynamic modeling method is developed for a deployment and locking mechanism composed of laminated composite appendage. Unlike most formulations of linear models which ignore coupled and nonlinear terms resulting in a seriously improper response, the present model takes into account the effects of geometric nonlinearity and coupled deformations. In order to accurately obtain the dynamic response of laminated composited appendages, nonlinear strain-displacement relations for laminated plate/shell elements are presented, and the corresponding formulations are derived from the Piola–Kirchhoff stress tensor for evaluating the internal forces. Furthermore, the effect of contact and impact located at a spring hinge is investigated, which can achieve the actuating and locking functions. To study the dynamic behavior of contact-impact, the generalized contact-impact forces between the pin and locking groove are considered in the model. Meanwhile, the Jacobian matrices of geometric and momentum constraints are derived from hinge kinematics. Finally, the complete expressions including coupled deformation terms, nonlinear stiffness, additional stiffness terms, and contact-impact forces are presented, and a full analysis is achieved by using both the linear model and nonlinear model, respectively. Numerical simulation results are obtained to verify the dynamic effects of coupled deformation terms, the nonlinear stiffness and additional stiffness terms in the present model.
    • Download: (1.311Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Dynamic Modeling for a Flexible Laminated Composite Appendage Attached to a Spacecraft Body Undergoing Deployment and Locking Motions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4242114
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorBin Di You
    contributor authorJian Min Wen
    contributor authorGuang Yu Zhang
    contributor authorYang Zhao
    date accessioned2017-12-16T09:22:48Z
    date available2017-12-16T09:22:48Z
    date issued2016
    identifier other%28ASCE%29AS.1943-5525.0000570.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242114
    description abstractA nonlinear dynamic modeling method is developed for a deployment and locking mechanism composed of laminated composite appendage. Unlike most formulations of linear models which ignore coupled and nonlinear terms resulting in a seriously improper response, the present model takes into account the effects of geometric nonlinearity and coupled deformations. In order to accurately obtain the dynamic response of laminated composited appendages, nonlinear strain-displacement relations for laminated plate/shell elements are presented, and the corresponding formulations are derived from the Piola–Kirchhoff stress tensor for evaluating the internal forces. Furthermore, the effect of contact and impact located at a spring hinge is investigated, which can achieve the actuating and locking functions. To study the dynamic behavior of contact-impact, the generalized contact-impact forces between the pin and locking groove are considered in the model. Meanwhile, the Jacobian matrices of geometric and momentum constraints are derived from hinge kinematics. Finally, the complete expressions including coupled deformation terms, nonlinear stiffness, additional stiffness terms, and contact-impact forces are presented, and a full analysis is achieved by using both the linear model and nonlinear model, respectively. Numerical simulation results are obtained to verify the dynamic effects of coupled deformation terms, the nonlinear stiffness and additional stiffness terms in the present model.
    publisherAmerican Society of Civil Engineers
    titleNonlinear Dynamic Modeling for a Flexible Laminated Composite Appendage Attached to a Spacecraft Body Undergoing Deployment and Locking Motions
    typeJournal Paper
    journal volume29
    journal issue5
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000570
    treeJournal of Aerospace Engineering:;2016:;Volume ( 029 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian