YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    FOS-Based Prestress Force Monitoring and Temperature Effect Estimation in Unbonded Tendons of PSC Girders

    Source: Journal of Aerospace Engineering:;2017:;Volume ( 030 ):;issue: 002
    Author:
    Thanh-Canh Huynh
    ,
    Jeong-Tae Kim
    DOI: 10.1061/(ASCE)AS.1943-5525.0000608
    Publisher: American Society of Civil Engineers
    Abstract: In this study, the effect of temperature variation on prestress force monitoring by fiber Bragg grating (FBG) sensors embedded in prestressing tendons of prestressed concrete (PSC) girders is estimated. First, a fiber optic sensor (FOS)-based prestress force monitoring method is proposed for PSC girders with unbonded tendons. A temperature-effect estimation method is modeled to theoretically estimate the change of prestress force due to the temperature variation. Second, lab-scale experiments are performed on a PSC girder with a FBG sensor-embedded smart tendon. A series of temperature-variation and prestress-loss events are simulated for the PSC girder. Third, the feasibility of the FOS-based monitoring method is experimentally evaluated for the prestress-loss cases under constant temperature. Finally, the effect of temperature variation on the FBG sensor-embedded tendon is evaluated by the temperature-effect estimation method.
    • Download: (5.105Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      FOS-Based Prestress Force Monitoring and Temperature Effect Estimation in Unbonded Tendons of PSC Girders

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4242102
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorThanh-Canh Huynh
    contributor authorJeong-Tae Kim
    date accessioned2017-12-16T09:22:45Z
    date available2017-12-16T09:22:45Z
    date issued2017
    identifier other%28ASCE%29AS.1943-5525.0000608.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242102
    description abstractIn this study, the effect of temperature variation on prestress force monitoring by fiber Bragg grating (FBG) sensors embedded in prestressing tendons of prestressed concrete (PSC) girders is estimated. First, a fiber optic sensor (FOS)-based prestress force monitoring method is proposed for PSC girders with unbonded tendons. A temperature-effect estimation method is modeled to theoretically estimate the change of prestress force due to the temperature variation. Second, lab-scale experiments are performed on a PSC girder with a FBG sensor-embedded smart tendon. A series of temperature-variation and prestress-loss events are simulated for the PSC girder. Third, the feasibility of the FOS-based monitoring method is experimentally evaluated for the prestress-loss cases under constant temperature. Finally, the effect of temperature variation on the FBG sensor-embedded tendon is evaluated by the temperature-effect estimation method.
    publisherAmerican Society of Civil Engineers
    titleFOS-Based Prestress Force Monitoring and Temperature Effect Estimation in Unbonded Tendons of PSC Girders
    typeJournal Paper
    journal volume30
    journal issue2
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000608
    treeJournal of Aerospace Engineering:;2017:;Volume ( 030 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian