YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Geotechnical Properties of Fillite—Simulant for Planetary Rover Mobility Studies

    Source: Journal of Aerospace Engineering:;2016:;Volume ( 029 ):;issue: 005
    Author:
    Michael B. Edwards
    ,
    Mandar M. Dewoolkar
    ,
    Dryver R. Huston
    DOI: 10.1061/(ASCE)AS.1943-5525.0000613
    Publisher: American Society of Civil Engineers
    Abstract: Earthbound testing of the mobility of lunar, Martian, and other extraterrestrial rovers benefits from the use of suitable soil simulants. To this end, a granular material called Fillite was selected as a simulant for modeling high-sinkage, high-slip situations that could be encountered by rovers, such as the one encountered by the Spirit rover on Mars. Fillite consists of alumino-silicate hollow microspheres harvested from the pulverized fuel ash of coal-fired power plants. It is available in large quantities at a reasonable cost and it is chemically inert. The focus of this paper is to summarize geotechnical characterization of Fillite, specifically the mechanical properties such as shear strength parameters, elastic modulus, Poisson’s ratio, and small-strain shear modulus. These measured properties are expected to enable analysis of rover mobility tests conducted in Fillite. The properties of Fillite are compared with the known and estimated properties of Martian and lunar regoliths as well as of other commonly used simulants. Fillite is quite dilatant. The peak and critical angles of internal friction of Fillite are smaller than those of most other simulants. Smaller shear strength, coupled with much smaller bulk unit weight as compared to other simulants, would result in smaller bearing and shearing resistances. This is expected to allow for better simulation of the intended high-sinkage, high-slip environment for rover mobility studies.
    • Download: (2.566Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Geotechnical Properties of Fillite—Simulant for Planetary Rover Mobility Studies

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4242100
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorMichael B. Edwards
    contributor authorMandar M. Dewoolkar
    contributor authorDryver R. Huston
    date accessioned2017-12-16T09:22:45Z
    date available2017-12-16T09:22:45Z
    date issued2016
    identifier other%28ASCE%29AS.1943-5525.0000613.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4242100
    description abstractEarthbound testing of the mobility of lunar, Martian, and other extraterrestrial rovers benefits from the use of suitable soil simulants. To this end, a granular material called Fillite was selected as a simulant for modeling high-sinkage, high-slip situations that could be encountered by rovers, such as the one encountered by the Spirit rover on Mars. Fillite consists of alumino-silicate hollow microspheres harvested from the pulverized fuel ash of coal-fired power plants. It is available in large quantities at a reasonable cost and it is chemically inert. The focus of this paper is to summarize geotechnical characterization of Fillite, specifically the mechanical properties such as shear strength parameters, elastic modulus, Poisson’s ratio, and small-strain shear modulus. These measured properties are expected to enable analysis of rover mobility tests conducted in Fillite. The properties of Fillite are compared with the known and estimated properties of Martian and lunar regoliths as well as of other commonly used simulants. Fillite is quite dilatant. The peak and critical angles of internal friction of Fillite are smaller than those of most other simulants. Smaller shear strength, coupled with much smaller bulk unit weight as compared to other simulants, would result in smaller bearing and shearing resistances. This is expected to allow for better simulation of the intended high-sinkage, high-slip environment for rover mobility studies.
    publisherAmerican Society of Civil Engineers
    titleGeotechnical Properties of Fillite—Simulant for Planetary Rover Mobility Studies
    typeJournal Paper
    journal volume29
    journal issue5
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000613
    treeJournal of Aerospace Engineering:;2016:;Volume ( 029 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian