YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Gradient-Enhanced Hierarchical Kriging Model for Aerodynamic Design Optimization

    Source: Journal of Aerospace Engineering:;2017:;Volume ( 030 ):;issue: 006
    Author:
    Chao Song
    ,
    Wenping Song
    ,
    Xudong Yang
    DOI: 10.1061/(ASCE)AS.1943-5525.0000770
    Publisher: American Society of Civil Engineers
    Abstract: A cokriging model incorporating gradient information and the function value of sample points can reduce the computational cost with a given level of accuracy. In this paper, the hierarchical kriging, a recently proposed cokriging method is employed, and a new method called gradient-enhanced hierarchical kriging (GEHK) is developed. First of all, a low-fidelity kriging model is built using derived samples, which are obtained by Taylor approximation using gradients and selected step sizes. Then a high-fidelity model is built by adjusting the low-fidelity kriging model with initial sample points. The GEHK model is more efficient than the traditional gradient-based cokriging model in the aerodynamic optimization, and could get a better optimum value. Taking the advantage of the modeling strategy, the global accuracy of the GEHK is not sensitive to step sizes, and the accuracy of prediction is enhanced evidently. The GEHK method is able to overcome limitations of traditional gradient-based cokriging models, and the prediction accuracy of the model is improved globally.
    • Download: (2.379Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Gradient-Enhanced Hierarchical Kriging Model for Aerodynamic Design Optimization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4241975
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorChao Song
    contributor authorWenping Song
    contributor authorXudong Yang
    date accessioned2017-12-16T09:22:16Z
    date available2017-12-16T09:22:16Z
    date issued2017
    identifier other%28ASCE%29AS.1943-5525.0000770.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4241975
    description abstractA cokriging model incorporating gradient information and the function value of sample points can reduce the computational cost with a given level of accuracy. In this paper, the hierarchical kriging, a recently proposed cokriging method is employed, and a new method called gradient-enhanced hierarchical kriging (GEHK) is developed. First of all, a low-fidelity kriging model is built using derived samples, which are obtained by Taylor approximation using gradients and selected step sizes. Then a high-fidelity model is built by adjusting the low-fidelity kriging model with initial sample points. The GEHK model is more efficient than the traditional gradient-based cokriging model in the aerodynamic optimization, and could get a better optimum value. Taking the advantage of the modeling strategy, the global accuracy of the GEHK is not sensitive to step sizes, and the accuracy of prediction is enhanced evidently. The GEHK method is able to overcome limitations of traditional gradient-based cokriging models, and the prediction accuracy of the model is improved globally.
    publisherAmerican Society of Civil Engineers
    titleGradient-Enhanced Hierarchical Kriging Model for Aerodynamic Design Optimization
    typeJournal Paper
    journal volume30
    journal issue6
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000770
    treeJournal of Aerospace Engineering:;2017:;Volume ( 030 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian