YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Efficient Fast Open-Loop Attitude Control Strategy for Earth Imaging Nanospacecraft

    Source: Journal of Aerospace Engineering:;2017:;Volume ( 030 ):;issue: 005
    Author:
    Armando Grossi
    ,
    Fabrizio Piergentili
    ,
    Fabio Santoni
    DOI: 10.1061/(ASCE)AS.1943-5525.0000773
    Publisher: American Society of Civil Engineers
    Abstract: This paper proposes a computationally efficient attitude control strategy for nanospacecraft fast reorientation maneuvers. The paper considers a 3U CubeSat for visual Earth observation missions with deployable solar panels, equipped with three reaction wheels, three magnetorquers, and a miniature star imager, due to a 0.1° stringent targeting requirement of the payload. The star imager is very accurate, but operational only at very small angular rates. Hence it cannot be used for attitude measurement during fast slewing maneuvers. The proposed attitude control strategy overcomes this limitation by implementing a combination of open-loop and closed-loop control schemes based on the simplifying assumption of negligible gyroscopic torques. This leads to a straightforward onboard computation of the control actions required by the reaction wheels, within the limits imposed by saturation, without solving complex and computationally intensive time-optimal solutions onboard, which would not be compatible with CubeSats. The open-loop control phase is followed by an accurate closed-loop phase, accurately pointing the spacecraft toward the target orientation. The strategy is validated by numerical simulations, including robustness with respect to system uncertainties, by Monte Carlo analysis.
    • Download: (1.969Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Efficient Fast Open-Loop Attitude Control Strategy for Earth Imaging Nanospacecraft

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4241972
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorArmando Grossi
    contributor authorFabrizio Piergentili
    contributor authorFabio Santoni
    date accessioned2017-12-16T09:22:16Z
    date available2017-12-16T09:22:16Z
    date issued2017
    identifier other%28ASCE%29AS.1943-5525.0000773.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4241972
    description abstractThis paper proposes a computationally efficient attitude control strategy for nanospacecraft fast reorientation maneuvers. The paper considers a 3U CubeSat for visual Earth observation missions with deployable solar panels, equipped with three reaction wheels, three magnetorquers, and a miniature star imager, due to a 0.1° stringent targeting requirement of the payload. The star imager is very accurate, but operational only at very small angular rates. Hence it cannot be used for attitude measurement during fast slewing maneuvers. The proposed attitude control strategy overcomes this limitation by implementing a combination of open-loop and closed-loop control schemes based on the simplifying assumption of negligible gyroscopic torques. This leads to a straightforward onboard computation of the control actions required by the reaction wheels, within the limits imposed by saturation, without solving complex and computationally intensive time-optimal solutions onboard, which would not be compatible with CubeSats. The open-loop control phase is followed by an accurate closed-loop phase, accurately pointing the spacecraft toward the target orientation. The strategy is validated by numerical simulations, including robustness with respect to system uncertainties, by Monte Carlo analysis.
    publisherAmerican Society of Civil Engineers
    titleEfficient Fast Open-Loop Attitude Control Strategy for Earth Imaging Nanospacecraft
    typeJournal Paper
    journal volume30
    journal issue5
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000773
    treeJournal of Aerospace Engineering:;2017:;Volume ( 030 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian