YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Efficient Mesh Deformation Method Combined with the Moving Submesh Approach

    Source: Journal of Aerospace Engineering:;2017:;Volume ( 030 ):;issue: 006
    Author:
    Xiaohua Li
    ,
    Zheng Guo
    ,
    Zhongxi Hou
    ,
    Gaowei Jia
    DOI: 10.1061/(ASCE)AS.1943-5525.0000784
    Publisher: American Society of Civil Engineers
    Abstract: It is a challenging task to simulate the situation involving nonstationary motions, one crucial requirement of which is an efficient algorithm to realize the high-quality computational mesh deformation. The inverse distance weighting (IDW) method is a very simple mesh deformation method and the moving submesh approach (MSA) can improve the efficiency significantly. In this paper, by combining IDW with MSA, a new hybrid mesh deformation method (IDW-MSA) is proposed, which only depends on the point information of mesh and does not need to build large tables of mesh connectivity data. For the translation and rotation movements, the index parameter has different value ranges that affect mesh quality differently. The default settings of index parameter are 2.2 for translation and 6.0 for rotation, which have been shown to handle large deformations without difficulty. The results demonstrate the efficiency and robustness of this algorithm via four test cases. From the point of deformed mesh quality, it is comparable to the disk relaxation algorithm and radial basis functions (RBFs). The computational cost can be reduced by more than an order of magnitude compared with the RBFs-MSA and spring analogy approach. For these benefits, the new algorithm has the capacity for unsteady flow simulations involving boundary movements.
    • Download: (4.191Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Efficient Mesh Deformation Method Combined with the Moving Submesh Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4241962
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorXiaohua Li
    contributor authorZheng Guo
    contributor authorZhongxi Hou
    contributor authorGaowei Jia
    date accessioned2017-12-16T09:22:13Z
    date available2017-12-16T09:22:13Z
    date issued2017
    identifier other%28ASCE%29AS.1943-5525.0000784.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4241962
    description abstractIt is a challenging task to simulate the situation involving nonstationary motions, one crucial requirement of which is an efficient algorithm to realize the high-quality computational mesh deformation. The inverse distance weighting (IDW) method is a very simple mesh deformation method and the moving submesh approach (MSA) can improve the efficiency significantly. In this paper, by combining IDW with MSA, a new hybrid mesh deformation method (IDW-MSA) is proposed, which only depends on the point information of mesh and does not need to build large tables of mesh connectivity data. For the translation and rotation movements, the index parameter has different value ranges that affect mesh quality differently. The default settings of index parameter are 2.2 for translation and 6.0 for rotation, which have been shown to handle large deformations without difficulty. The results demonstrate the efficiency and robustness of this algorithm via four test cases. From the point of deformed mesh quality, it is comparable to the disk relaxation algorithm and radial basis functions (RBFs). The computational cost can be reduced by more than an order of magnitude compared with the RBFs-MSA and spring analogy approach. For these benefits, the new algorithm has the capacity for unsteady flow simulations involving boundary movements.
    publisherAmerican Society of Civil Engineers
    titleEfficient Mesh Deformation Method Combined with the Moving Submesh Approach
    typeJournal Paper
    journal volume30
    journal issue6
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0000784
    treeJournal of Aerospace Engineering:;2017:;Volume ( 030 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian