YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design and Experimental Analysis of an Externally Prestressed Steel and Concrete Footbridge Equipped with Vibration Mitigation Devices

    Source: Journal of Bridge Engineering:;2016:;Volume ( 021 ):;issue: 008
    Author:
    Andrea Dall’Asta
    ,
    Laura Ragni
    ,
    Alessandro Zona
    ,
    Luca Nardini
    ,
    Walter Salvatore
    DOI: 10.1061/(ASCE)BE.1943-5592.0000842
    Publisher: American Society of Civil Engineers
    Abstract: A 142-m, three-span continuous footbridge over the Esino River (Italy) is considered as a case study to illustrate a number of challenging aspects in its static and dynamic design. The adoption of an optimized steel deck with a variable cross section together with the use of external prestressing tendons in the central span allows a substantial reduction of structural weights. The resulting footbridge requires a proper model for the assessment of its behavior up to the ultimate limit state as well as attention to vibration control under pedestrian loading at the service limit state. The former issue is addressed through the use of a specifically developed material and geometric nonlinear finite-element formulation. Regarding vibration control, an original combination of two different systems is used, i.e., high damping rubber (HDR) stripes and tuned mass dampers (TMDs). The HDR stripes, applied between the steel deck and the concrete floor, increase the overall damping of the footbridge, whereas the TMDs significantly reduce the accelerations at the most critical frequencies. The design of this nonconventional solution for vibration control is discussed, and the results of experimental tests in the early stage of the footbridge construction are illustrated. The experimental results allow the validation of the structural model used in the design as well as the evaluation of the influence of the HDR stripes and of the nonstructural components on the modal properties of the completed footbridge, permitting fine-tuning of the TMDs before they are installed.
    • Download: (3.583Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design and Experimental Analysis of an Externally Prestressed Steel and Concrete Footbridge Equipped with Vibration Mitigation Devices

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4241906
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorAndrea Dall’Asta
    contributor authorLaura Ragni
    contributor authorAlessandro Zona
    contributor authorLuca Nardini
    contributor authorWalter Salvatore
    date accessioned2017-12-16T09:22:03Z
    date available2017-12-16T09:22:03Z
    date issued2016
    identifier other%28ASCE%29BE.1943-5592.0000842.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4241906
    description abstractA 142-m, three-span continuous footbridge over the Esino River (Italy) is considered as a case study to illustrate a number of challenging aspects in its static and dynamic design. The adoption of an optimized steel deck with a variable cross section together with the use of external prestressing tendons in the central span allows a substantial reduction of structural weights. The resulting footbridge requires a proper model for the assessment of its behavior up to the ultimate limit state as well as attention to vibration control under pedestrian loading at the service limit state. The former issue is addressed through the use of a specifically developed material and geometric nonlinear finite-element formulation. Regarding vibration control, an original combination of two different systems is used, i.e., high damping rubber (HDR) stripes and tuned mass dampers (TMDs). The HDR stripes, applied between the steel deck and the concrete floor, increase the overall damping of the footbridge, whereas the TMDs significantly reduce the accelerations at the most critical frequencies. The design of this nonconventional solution for vibration control is discussed, and the results of experimental tests in the early stage of the footbridge construction are illustrated. The experimental results allow the validation of the structural model used in the design as well as the evaluation of the influence of the HDR stripes and of the nonstructural components on the modal properties of the completed footbridge, permitting fine-tuning of the TMDs before they are installed.
    publisherAmerican Society of Civil Engineers
    titleDesign and Experimental Analysis of an Externally Prestressed Steel and Concrete Footbridge Equipped with Vibration Mitigation Devices
    typeJournal Paper
    journal volume21
    journal issue8
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0000842
    treeJournal of Bridge Engineering:;2016:;Volume ( 021 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian