YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seismic Performance of Precast, Pretensioned, and Cast-in-Place Bridges: Shake Table Test Comparison

    Source: Journal of Bridge Engineering:;2016:;Volume ( 021 ):;issue: 010
    Author:
    Islam M. Mantawy
    ,
    Travis Thonstad
    ,
    David H. Sanders
    ,
    John F. Stanton
    ,
    Marc O. Eberhard
    DOI: 10.1061/(ASCE)BE.1943-5592.0000934
    Publisher: American Society of Civil Engineers
    Abstract: A new bridge system has been developed to (1) reduce on-site construction time by using precast components, (2) eliminate major earthquake damage by utilizing column rocking and confinement of the column ends with a steel tube, and (3) maintain the system functionality after a strong earthquake by minimizing residual drift through the use of pretensioned strands in the columns. Furthermore, it uses only conventional materials. This paper compares the shaking table performance of a quarter-scale, two-span bridge constructed through the use of the new system with that of a conventional cast-in-place bridge with similar geometry tested in 2005. The new bridge system was constructed in approximately 20% of the time needed for the conventional cast-in-place system. In tests, the conventional bridge suffered major concrete cracking and spalling, whereas in the new system, damage to the concrete was only cosmetic. In the conventional bridge, the longitudinal bars buckled, and both the longitudinal and spiral reinforcement fractured, whereas in the new system, the damage to the reinforcement was limited to longitudinal bar fracture, and that occurred only under excitations much larger than the design-level motion. Furthermore, bar fracture in the new system could be delayed by increasing the unbonded length of the bars. The residual drift of the new system was essentially zero for all motions, whereas one of the exterior bents of the conventional bridge was so badly damaged and out of plumb that some of the supplemental mass on the bridge had to be removed, and testing was stopped shortly thereafter.
    • Download: (1.937Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seismic Performance of Precast, Pretensioned, and Cast-in-Place Bridges: Shake Table Test Comparison

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4241844
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorIslam M. Mantawy
    contributor authorTravis Thonstad
    contributor authorDavid H. Sanders
    contributor authorJohn F. Stanton
    contributor authorMarc O. Eberhard
    date accessioned2017-12-16T09:21:49Z
    date available2017-12-16T09:21:49Z
    date issued2016
    identifier other%28ASCE%29BE.1943-5592.0000934.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4241844
    description abstractA new bridge system has been developed to (1) reduce on-site construction time by using precast components, (2) eliminate major earthquake damage by utilizing column rocking and confinement of the column ends with a steel tube, and (3) maintain the system functionality after a strong earthquake by minimizing residual drift through the use of pretensioned strands in the columns. Furthermore, it uses only conventional materials. This paper compares the shaking table performance of a quarter-scale, two-span bridge constructed through the use of the new system with that of a conventional cast-in-place bridge with similar geometry tested in 2005. The new bridge system was constructed in approximately 20% of the time needed for the conventional cast-in-place system. In tests, the conventional bridge suffered major concrete cracking and spalling, whereas in the new system, damage to the concrete was only cosmetic. In the conventional bridge, the longitudinal bars buckled, and both the longitudinal and spiral reinforcement fractured, whereas in the new system, the damage to the reinforcement was limited to longitudinal bar fracture, and that occurred only under excitations much larger than the design-level motion. Furthermore, bar fracture in the new system could be delayed by increasing the unbonded length of the bars. The residual drift of the new system was essentially zero for all motions, whereas one of the exterior bents of the conventional bridge was so badly damaged and out of plumb that some of the supplemental mass on the bridge had to be removed, and testing was stopped shortly thereafter.
    publisherAmerican Society of Civil Engineers
    titleSeismic Performance of Precast, Pretensioned, and Cast-in-Place Bridges: Shake Table Test Comparison
    typeJournal Paper
    journal volume21
    journal issue10
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0000934
    treeJournal of Bridge Engineering:;2016:;Volume ( 021 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian