YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Explorations of the Torsional Vortex-Induced Vibrations of a Bridge Deck

    Source: Journal of Bridge Engineering:;2016:;Volume ( 021 ):;issue: 012
    Author:
    Fuyou Xu
    ,
    Xuyong Ying
    ,
    Yongning Li
    ,
    Mingjie Zhang
    DOI: 10.1061/(ASCE)BE.1943-5592.0000941
    Publisher: American Society of Civil Engineers
    Abstract: With the specific objective of exploring the surface pressure characteristics and further revealing the torsional vortex-induced vibration (VIV) mechanisms of a bridge deck with a particular geometry, numerous simultaneous pressure measurement campaigns were performed in a wind tunnel for aerodynamic-countermeasure–modified and unmodified sections of a section model at different angles of incidence under the conditions of smooth or turbulent flow. The mean and fluctuating pressure distributions, instantaneous pressures at typical instants, dominant pressure frequencies, pressure phase differences at the dominant frequency of individual pressure measurement taps, and the correlation coefficients among local and global torsional moments were studied, revealing the origins and mechanisms of torsional VIVs. The results demonstrate that the angle of incidence, flow conditions (smooth or turbulent), and installation of a spoiler exert significant effects on the surface pressure distributions, hence affecting the corresponding aerodynamic performance of the bridge deck. Turbulence on the top surface can potentially neutralize the vortex shedding effects and enhance immunity to torsional VIVs. The signature turbulence from the leading (fairing) edge was effectively weakened or even destroyed by sufficiently intense oncoming turbulence and/or the turbulence generated by a spoiler with an appropriate configuration and location. Therefore, potential torsional VIVs could be suppressed by the interaction of vortices generated by oncoming and signature turbulences. This knowledge is essential for a thorough evaluation of the potential for torsional VIVs for this particular bridge deck.
    • Download: (675.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Explorations of the Torsional Vortex-Induced Vibrations of a Bridge Deck

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4241836
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorFuyou Xu
    contributor authorXuyong Ying
    contributor authorYongning Li
    contributor authorMingjie Zhang
    date accessioned2017-12-16T09:21:46Z
    date available2017-12-16T09:21:46Z
    date issued2016
    identifier other%28ASCE%29BE.1943-5592.0000941.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4241836
    description abstractWith the specific objective of exploring the surface pressure characteristics and further revealing the torsional vortex-induced vibration (VIV) mechanisms of a bridge deck with a particular geometry, numerous simultaneous pressure measurement campaigns were performed in a wind tunnel for aerodynamic-countermeasure–modified and unmodified sections of a section model at different angles of incidence under the conditions of smooth or turbulent flow. The mean and fluctuating pressure distributions, instantaneous pressures at typical instants, dominant pressure frequencies, pressure phase differences at the dominant frequency of individual pressure measurement taps, and the correlation coefficients among local and global torsional moments were studied, revealing the origins and mechanisms of torsional VIVs. The results demonstrate that the angle of incidence, flow conditions (smooth or turbulent), and installation of a spoiler exert significant effects on the surface pressure distributions, hence affecting the corresponding aerodynamic performance of the bridge deck. Turbulence on the top surface can potentially neutralize the vortex shedding effects and enhance immunity to torsional VIVs. The signature turbulence from the leading (fairing) edge was effectively weakened or even destroyed by sufficiently intense oncoming turbulence and/or the turbulence generated by a spoiler with an appropriate configuration and location. Therefore, potential torsional VIVs could be suppressed by the interaction of vortices generated by oncoming and signature turbulences. This knowledge is essential for a thorough evaluation of the potential for torsional VIVs for this particular bridge deck.
    publisherAmerican Society of Civil Engineers
    titleExperimental Explorations of the Torsional Vortex-Induced Vibrations of a Bridge Deck
    typeJournal Paper
    journal volume21
    journal issue12
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0000941
    treeJournal of Bridge Engineering:;2016:;Volume ( 021 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian