YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance Comparison between Passive Negative-Stiffness Dampers and Active Control in Cable Vibration Mitigation

    Source: Journal of Bridge Engineering:;2017:;Volume ( 022 ):;issue: 009
    Author:
    Xiang Shi
    ,
    Songye Zhu
    ,
    Satish Nagarajaiah
    DOI: 10.1061/(ASCE)BE.1943-5592.0001088
    Publisher: American Society of Civil Engineers
    Abstract: The installation of dampers close to cable anchorages is a common approach for stay-cable vibration mitigation. Inspired by the force-deformation relationship produced by actively controlled dampers, passive negative-stiffness dampers (NSDs) were proposed for stay cables in the past to achieve excellent vibration-control performance. However, a systematic comparison between passive NSDs and active control in cable vibration mitigation has rarely been reported in literature. This paper systematically compares vibration mitigation performances of a passive NSD to the performance of two active control methods, linear quadratic regulator (LQR) and output feedback control. The comparison indicates that a passive NSD can offer a stay cable with a high damping level comparable to that of LQR control. However, passive NSD will also decrease the modal frequencies of a stay cable, whereas LQR will increase the frequencies slightly. The dynamic response results also indicate that the active LQR control offers slightly better control performance than the passive NSD in various loading cases. The superiority of the LQR control over the passive NSD can be explained through an output feedback control approach. It is noteworthy that the NSD is regarded as more practical and reliable because it offers protection by completely passive means without the need for the feedback and actuation that are required in active control.
    • Download: (3.764Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance Comparison between Passive Negative-Stiffness Dampers and Active Control in Cable Vibration Mitigation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4241766
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorXiang Shi
    contributor authorSongye Zhu
    contributor authorSatish Nagarajaiah
    date accessioned2017-12-16T09:21:33Z
    date available2017-12-16T09:21:33Z
    date issued2017
    identifier other%28ASCE%29BE.1943-5592.0001088.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4241766
    description abstractThe installation of dampers close to cable anchorages is a common approach for stay-cable vibration mitigation. Inspired by the force-deformation relationship produced by actively controlled dampers, passive negative-stiffness dampers (NSDs) were proposed for stay cables in the past to achieve excellent vibration-control performance. However, a systematic comparison between passive NSDs and active control in cable vibration mitigation has rarely been reported in literature. This paper systematically compares vibration mitigation performances of a passive NSD to the performance of two active control methods, linear quadratic regulator (LQR) and output feedback control. The comparison indicates that a passive NSD can offer a stay cable with a high damping level comparable to that of LQR control. However, passive NSD will also decrease the modal frequencies of a stay cable, whereas LQR will increase the frequencies slightly. The dynamic response results also indicate that the active LQR control offers slightly better control performance than the passive NSD in various loading cases. The superiority of the LQR control over the passive NSD can be explained through an output feedback control approach. It is noteworthy that the NSD is regarded as more practical and reliable because it offers protection by completely passive means without the need for the feedback and actuation that are required in active control.
    publisherAmerican Society of Civil Engineers
    titlePerformance Comparison between Passive Negative-Stiffness Dampers and Active Control in Cable Vibration Mitigation
    typeJournal Paper
    journal volume22
    journal issue9
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001088
    treeJournal of Bridge Engineering:;2017:;Volume ( 022 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian