YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study of the Aseismic Effect of a Locking Ball for a Continuous Bridge

    Source: Journal of Bridge Engineering:;2017:;Volume ( 022 ):;issue: 010
    Author:
    Wenxue Zhang
    ,
    Rong Fang
    ,
    Shitong Chen
    ,
    Hanqing Zhao
    DOI: 10.1061/(ASCE)BE.1943-5592.0001099
    Publisher: American Society of Civil Engineers
    Abstract: Current sliding-bearing designs do not make full use of the stiffness and potential ability of sliding piers in the aseismic design of continuous bridges. Aiming at the problem that the demand on the only fixed-pier force and beam-end longitudinal displacement is too large under longitudinal direction earthquakes, an aseismic design idea of a continuous bridge is proposed based on coloading of all piers by installing locking balls between the sliding piers and the continuous girder. This device can also handle displacement caused by rise and drop in temperature. When a strong earthquake occurs, the locking ball is activated, and the locking connections between the girder and the sliding piers were built to let the sliding piers carry the longitudinal seismic load of the superstructure in conjunction with the fixed pier. A vibration-table experiment on a three-span continuous bridge with a scale of 1:25 was conducted, and results were compared with finite-element model (FEM) simulations. The aseismic effect and the mechanism of the locking ball on the continuous bridge were analyzed. The results showed that the sliding piers can bear the longitudinal seismic load of the upper structure in conjunction with the fixed pier under strong earthquake conditions and can improve the overall aseismic performance of the continuous bridge significantly. Meanwhile, the seismic demands on the sliding piers increased. The number of spans and the length of the continuous girder had an influence on the locking-ball aseismic effect. However, the variation of temperature had little influence on the aseismic effect of the locking ball.
    • Download: (4.820Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study of the Aseismic Effect of a Locking Ball for a Continuous Bridge

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4241756
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorWenxue Zhang
    contributor authorRong Fang
    contributor authorShitong Chen
    contributor authorHanqing Zhao
    date accessioned2017-12-16T09:21:30Z
    date available2017-12-16T09:21:30Z
    date issued2017
    identifier other%28ASCE%29BE.1943-5592.0001099.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4241756
    description abstractCurrent sliding-bearing designs do not make full use of the stiffness and potential ability of sliding piers in the aseismic design of continuous bridges. Aiming at the problem that the demand on the only fixed-pier force and beam-end longitudinal displacement is too large under longitudinal direction earthquakes, an aseismic design idea of a continuous bridge is proposed based on coloading of all piers by installing locking balls between the sliding piers and the continuous girder. This device can also handle displacement caused by rise and drop in temperature. When a strong earthquake occurs, the locking ball is activated, and the locking connections between the girder and the sliding piers were built to let the sliding piers carry the longitudinal seismic load of the superstructure in conjunction with the fixed pier. A vibration-table experiment on a three-span continuous bridge with a scale of 1:25 was conducted, and results were compared with finite-element model (FEM) simulations. The aseismic effect and the mechanism of the locking ball on the continuous bridge were analyzed. The results showed that the sliding piers can bear the longitudinal seismic load of the upper structure in conjunction with the fixed pier under strong earthquake conditions and can improve the overall aseismic performance of the continuous bridge significantly. Meanwhile, the seismic demands on the sliding piers increased. The number of spans and the length of the continuous girder had an influence on the locking-ball aseismic effect. However, the variation of temperature had little influence on the aseismic effect of the locking ball.
    publisherAmerican Society of Civil Engineers
    titleExperimental Study of the Aseismic Effect of a Locking Ball for a Continuous Bridge
    typeJournal Paper
    journal volume22
    journal issue10
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001099
    treeJournal of Bridge Engineering:;2017:;Volume ( 022 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian