YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation on Relations between Flutter Derivatives and Aerodynamic Admittances

    Source: Journal of Bridge Engineering:;2017:;Volume ( 022 ):;issue: 010
    Author:
    Zhitian Zhang
    ,
    Weifeng Zhang
    DOI: 10.1061/(ASCE)BE.1943-5592.0001117
    Publisher: American Society of Civil Engineers
    Abstract: Two kinds of relations between flutter derivatives and aerodynamic admittance functions (AAFs), which have been used in bridge aerodynamics, are discussed in this study by means of theoretical analysis and experiments. The first kind, called substitutive Kϋssner function method in this study, assumes equivalence between the Wagner function and the Kϋssner function. In doing so, the AAFs can be calculated based on flutter derivatives. The other one involves a concept of equivalent Theodorsen function, and the relation is built up by utilizing the classic relation between the Sears function and the Theodorsen function. Both methods are reasoned to be logically problematic in this study. Furthermore, these relations were examined with wind tunnel experiments. Flutter derivatives and AAFs of a flat plate and a rectangular cylinder with an aspect ratio of 4 were tested. The measured AAFs were compared with those calculated from flutter derivatives. The results show that, as frequency increases, the gap between the measured AAFs and those by the substitutive Kϋssner function method increases drastically. In comparison, the AAFs based on equivalent Theodorsen functions are closer to measured results in the low-frequency range; however, as frequency increases, they deviate from the measured AAFs in the form of violent oscillation, streamlined and bluff sections alike. It is shown that this kind of fluctuation originates from the illogicality inherent in the method.
    • Download: (868.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation on Relations between Flutter Derivatives and Aerodynamic Admittances

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4241739
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorZhitian Zhang
    contributor authorWeifeng Zhang
    date accessioned2017-12-16T09:21:26Z
    date available2017-12-16T09:21:26Z
    date issued2017
    identifier other%28ASCE%29BE.1943-5592.0001117.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4241739
    description abstractTwo kinds of relations between flutter derivatives and aerodynamic admittance functions (AAFs), which have been used in bridge aerodynamics, are discussed in this study by means of theoretical analysis and experiments. The first kind, called substitutive Kϋssner function method in this study, assumes equivalence between the Wagner function and the Kϋssner function. In doing so, the AAFs can be calculated based on flutter derivatives. The other one involves a concept of equivalent Theodorsen function, and the relation is built up by utilizing the classic relation between the Sears function and the Theodorsen function. Both methods are reasoned to be logically problematic in this study. Furthermore, these relations were examined with wind tunnel experiments. Flutter derivatives and AAFs of a flat plate and a rectangular cylinder with an aspect ratio of 4 were tested. The measured AAFs were compared with those calculated from flutter derivatives. The results show that, as frequency increases, the gap between the measured AAFs and those by the substitutive Kϋssner function method increases drastically. In comparison, the AAFs based on equivalent Theodorsen functions are closer to measured results in the low-frequency range; however, as frequency increases, they deviate from the measured AAFs in the form of violent oscillation, streamlined and bluff sections alike. It is shown that this kind of fluctuation originates from the illogicality inherent in the method.
    publisherAmerican Society of Civil Engineers
    titleExperimental Investigation on Relations between Flutter Derivatives and Aerodynamic Admittances
    typeJournal Paper
    journal volume22
    journal issue10
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001117
    treeJournal of Bridge Engineering:;2017:;Volume ( 022 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian