YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Overturning-Collapse Modeling and Safety Assessment for Bridges Supported by Single-Column Piers

    Source: Journal of Bridge Engineering:;2017:;Volume ( 022 ):;issue: 011
    Author:
    Wen Xiong
    ,
    C. S. Cai
    ,
    Bo Kong
    ,
    Jianshu Ye
    DOI: 10.1061/(ASCE)BE.1943-5592.0001133
    Publisher: American Society of Civil Engineers
    Abstract: Overturning collapse has been regarded as one of the most critical failure modes for single-column-pier bridges in current practices. To reveal the entire overturning process, a meticulous three-dimensional (3D) simulation of bridges with superstructures, bearings, and piers, considering geometric and material nonlinearities, was first established. Multiple load patterns were applied, including the practical eccentric truckloads that lead to overturning incidents and the conventional checking loads that are defined in the bridge design specifications. Second, four sequential limit stages of the overturning process were defined to precisely describe the structural behaviors under different mechanical conditions before the final collapse. A safety indicator was further proposed to quantify the possibility of overturning with respect to different limit stages. Using such a safety indicator in a case study, the ability of bridges to resist overturning was assessed and compared to results from the specifications and field observations. By doing this, the drawbacks of specifications in checking the safety of single-column-pier bridges were demonstrated. A parametric study was finally conducted to investigate the influence of different single-column-pier bridge arrangements on the overturning behaviors. It can be concluded that the specification-based methods greatly overrate the safety level of single-column-pier bridges, whereas the safety indicator provides more reasonable results as well as multiple-sublevel safety warnings up to the final collapse. Additional findings and suggestions for a better design or maintenance of single-column-pier bridges in curved-girder cases were also discussed.
    • Download: (2.057Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Overturning-Collapse Modeling and Safety Assessment for Bridges Supported by Single-Column Piers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4241723
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorWen Xiong
    contributor authorC. S. Cai
    contributor authorBo Kong
    contributor authorJianshu Ye
    date accessioned2017-12-16T09:21:23Z
    date available2017-12-16T09:21:23Z
    date issued2017
    identifier other%28ASCE%29BE.1943-5592.0001133.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4241723
    description abstractOverturning collapse has been regarded as one of the most critical failure modes for single-column-pier bridges in current practices. To reveal the entire overturning process, a meticulous three-dimensional (3D) simulation of bridges with superstructures, bearings, and piers, considering geometric and material nonlinearities, was first established. Multiple load patterns were applied, including the practical eccentric truckloads that lead to overturning incidents and the conventional checking loads that are defined in the bridge design specifications. Second, four sequential limit stages of the overturning process were defined to precisely describe the structural behaviors under different mechanical conditions before the final collapse. A safety indicator was further proposed to quantify the possibility of overturning with respect to different limit stages. Using such a safety indicator in a case study, the ability of bridges to resist overturning was assessed and compared to results from the specifications and field observations. By doing this, the drawbacks of specifications in checking the safety of single-column-pier bridges were demonstrated. A parametric study was finally conducted to investigate the influence of different single-column-pier bridge arrangements on the overturning behaviors. It can be concluded that the specification-based methods greatly overrate the safety level of single-column-pier bridges, whereas the safety indicator provides more reasonable results as well as multiple-sublevel safety warnings up to the final collapse. Additional findings and suggestions for a better design or maintenance of single-column-pier bridges in curved-girder cases were also discussed.
    publisherAmerican Society of Civil Engineers
    titleOverturning-Collapse Modeling and Safety Assessment for Bridges Supported by Single-Column Piers
    typeJournal Paper
    journal volume22
    journal issue11
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001133
    treeJournal of Bridge Engineering:;2017:;Volume ( 022 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian