YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Monotonic Stress–Strain Behavior of Steel Rebars Embedded in FRP-Confined Concrete Including Buckling

    Source: Journal of Composites for Construction:;2017:;Volume ( 021 ):;issue: 005
    Author:
    Yu-Lei Bai
    ,
    Jian-Guo Dai
    ,
    Jin-Guang Teng
    DOI: 10.1061/(ASCE)CC.1943-5614.0000823
    Publisher: American Society of Civil Engineers
    Abstract: Fiber-reinforced polymer (FRP) confining jackets offer an attractive solution for the seismic retrofit of RC columns. For the accurate prediction of strength and ductility of FRP-confined RC columns, it is necessary to understand interactions between the FRP jacket and the RC column at all deformation levels under seismic loading. In particular, when the transverse steel reinforcement consists of widely spaced steel stirrups or spirals, the longitudinal steel reinforcing bars (rebars) are likely to develop buckling deformations despite the lateral support provided by the FRP-confined concrete. This paper presents a theoretical study into the buckling behavior of longitudinal steel rebars embedded in FRP-confined concrete subjected to monotonic axial compression. In the theoretical model, a beam-on-elastic foundation idealization is used, where the steel rebars are laterally supported by elastic springs representing the FRP-confined cover concrete. To evaluate the stiffness of the elastic springs, a curved beam model is proposed. Predictions from the theoretical model are compared with test results, demonstrating the reliability of the theoretical model. A parametric study is then presented to examine the influence of three key factors (i.e., spring stiffness, yield strength of steel, and slenderness ratio of rebar) on the overall compressive stress–strain response of laterally supported steel rebars. Finally, an empirical compressive stress–strain model considering the effect of buckling deformation is proposed for steel rebars embedded in FRP-confined concrete subjected to monotonic axial compression and validated through comparisons with the test results.
    • Download: (1.267Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Monotonic Stress–Strain Behavior of Steel Rebars Embedded in FRP-Confined Concrete Including Buckling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4241599
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorYu-Lei Bai
    contributor authorJian-Guo Dai
    contributor authorJin-Guang Teng
    date accessioned2017-12-16T09:20:33Z
    date available2017-12-16T09:20:33Z
    date issued2017
    identifier other%28ASCE%29CC.1943-5614.0000823.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4241599
    description abstractFiber-reinforced polymer (FRP) confining jackets offer an attractive solution for the seismic retrofit of RC columns. For the accurate prediction of strength and ductility of FRP-confined RC columns, it is necessary to understand interactions between the FRP jacket and the RC column at all deformation levels under seismic loading. In particular, when the transverse steel reinforcement consists of widely spaced steel stirrups or spirals, the longitudinal steel reinforcing bars (rebars) are likely to develop buckling deformations despite the lateral support provided by the FRP-confined concrete. This paper presents a theoretical study into the buckling behavior of longitudinal steel rebars embedded in FRP-confined concrete subjected to monotonic axial compression. In the theoretical model, a beam-on-elastic foundation idealization is used, where the steel rebars are laterally supported by elastic springs representing the FRP-confined cover concrete. To evaluate the stiffness of the elastic springs, a curved beam model is proposed. Predictions from the theoretical model are compared with test results, demonstrating the reliability of the theoretical model. A parametric study is then presented to examine the influence of three key factors (i.e., spring stiffness, yield strength of steel, and slenderness ratio of rebar) on the overall compressive stress–strain response of laterally supported steel rebars. Finally, an empirical compressive stress–strain model considering the effect of buckling deformation is proposed for steel rebars embedded in FRP-confined concrete subjected to monotonic axial compression and validated through comparisons with the test results.
    publisherAmerican Society of Civil Engineers
    titleMonotonic Stress–Strain Behavior of Steel Rebars Embedded in FRP-Confined Concrete Including Buckling
    typeJournal Paper
    journal volume21
    journal issue5
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000823
    treeJournal of Composites for Construction:;2017:;Volume ( 021 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian