YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Identification of Biomechanical Risk Factors for the Development of Lower-Back Disorders during Manual Rebar Tying

    Source: Journal of Construction Engineering and Management:;2017:;Volume ( 143 ):;issue: 001
    Author:
    Waleed Umer
    ,
    Heng Li
    ,
    Grace Pui Yuk Szeto
    ,
    Arnold Yu Lok Wong
    DOI: 10.1061/(ASCE)CO.1943-7862.0001208
    Publisher: American Society of Civil Engineers
    Abstract: High prevalence of musculoskeletal disorders among construction workers pose challenges to the productivity and occupational health of the construction industry. To mitigate the risk of musculoskeletal disorders, construction managers need to deepen their understanding of the physical and biomechanical demands of various construction tasks so that appropriate policies and preventive measures can be implemented. Among various construction trades, rebar workers are highly susceptible to lower-back disorders (LBDs) given the physically demanding nature of their work tasks. In particular, rebar tying is considered to be closely related to LBDs because it exposes workers to multiple ergonomic risk factors (repetitive works in prolonged static and awkward postures). The objective of the current study was to compare the differences in lumbar biomechanics during three typical rebar tying postures: stooping, one-legged kneeling, and squatting. Biomechanical variables including trunk muscle activity and trunk kinematics were measured by surface electromyography and motion sensors, respectively. Ten healthy male participants performed a simulated rebar tying task in each of the three postures in a laboratory setting. Repeated measures analysis of variance showed that while each posture has its unique trunk kinematic characteristics, all these postures involved excessive trunk inclination that exceeded the internationally recommended trunk inclination angle of 60° for static working postures. Of the three postures, stooping posture demonstrated a significant reduction in electromyographic activity of lumbar muscles (a reduction in 60–80% of muscle activity as compared to the other two postures). The reduced muscle activity may shift the loading to passive spinal structures (e.g., spinal ligaments and joint capsules), which is known to be a risk factor for LBD development. Collectively, the results from this study may help explain the high prevalence of LBDs in rebar workers. Future studies are warranted to confirm the findings at construction sites and to develop appropriate ergonomic approaches for rebar workers.
    • Download: (9.960Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Identification of Biomechanical Risk Factors for the Development of Lower-Back Disorders during Manual Rebar Tying

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4241289
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorWaleed Umer
    contributor authorHeng Li
    contributor authorGrace Pui Yuk Szeto
    contributor authorArnold Yu Lok Wong
    date accessioned2017-12-16T09:18:41Z
    date available2017-12-16T09:18:41Z
    date issued2017
    identifier other%28ASCE%29CO.1943-7862.0001208.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4241289
    description abstractHigh prevalence of musculoskeletal disorders among construction workers pose challenges to the productivity and occupational health of the construction industry. To mitigate the risk of musculoskeletal disorders, construction managers need to deepen their understanding of the physical and biomechanical demands of various construction tasks so that appropriate policies and preventive measures can be implemented. Among various construction trades, rebar workers are highly susceptible to lower-back disorders (LBDs) given the physically demanding nature of their work tasks. In particular, rebar tying is considered to be closely related to LBDs because it exposes workers to multiple ergonomic risk factors (repetitive works in prolonged static and awkward postures). The objective of the current study was to compare the differences in lumbar biomechanics during three typical rebar tying postures: stooping, one-legged kneeling, and squatting. Biomechanical variables including trunk muscle activity and trunk kinematics were measured by surface electromyography and motion sensors, respectively. Ten healthy male participants performed a simulated rebar tying task in each of the three postures in a laboratory setting. Repeated measures analysis of variance showed that while each posture has its unique trunk kinematic characteristics, all these postures involved excessive trunk inclination that exceeded the internationally recommended trunk inclination angle of 60° for static working postures. Of the three postures, stooping posture demonstrated a significant reduction in electromyographic activity of lumbar muscles (a reduction in 60–80% of muscle activity as compared to the other two postures). The reduced muscle activity may shift the loading to passive spinal structures (e.g., spinal ligaments and joint capsules), which is known to be a risk factor for LBD development. Collectively, the results from this study may help explain the high prevalence of LBDs in rebar workers. Future studies are warranted to confirm the findings at construction sites and to develop appropriate ergonomic approaches for rebar workers.
    publisherAmerican Society of Civil Engineers
    titleIdentification of Biomechanical Risk Factors for the Development of Lower-Back Disorders during Manual Rebar Tying
    typeJournal Paper
    journal volume143
    journal issue1
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0001208
    treeJournal of Construction Engineering and Management:;2017:;Volume ( 143 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian