YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Concrete Crack Assessment Using Digital Image Processing and 3D Scene Reconstruction

    Source: Journal of Computing in Civil Engineering:;2016:;Volume ( 030 ):;issue: 001
    Author:
    Yu-Fei Liu
    ,
    Soojin Cho
    ,
    B. F. Spencer
    ,
    Jian-Sheng Fan
    DOI: 10.1061/(ASCE)CP.1943-5487.0000446
    Publisher: American Society of Civil Engineers
    Abstract: Traditional crack assessment methods for concrete structures are time consuming and produce subjective results. The development of a means for automated assessment employing digital image processing offers high potential for practical implementation. However, two problems in two-dimensional (2D) image processing hinder direct application for crack assessment, as follows: (1) the image used for the digital image processing has to be taken perpendicular to the surface of the concrete structure, and (2) the working distance used in retrieving the imaging model has to be measured each time. To address these problems, this paper proposes a combination of 2D image processing and three-dimensional (3D) scene reconstruction to locate the 3D position of crack edges. In the proposed algorithm, first the precise crack information is obtained from the 2D images after noise elimination and crack detection using image processing techniques. Then, 3D reconstruction is conducted employing several crack images to build the 3D scene, and the surfaces in the scene are estimated by plane fitting using the 3D point cloud. Subsequently, the crack is projected from the 2D image onto the 3D concrete surface with a crack so that the precise 3D coordinates of the crack edges are found. The final crack assessment results are given using the scaled 3D crack information. Field tests were conducted on a concrete wall including single and multiple concrete surface tests, and a concrete flange with complex crack shape, respectively. The results indicate that the proposed approach overcomes existing hurdles to offer a new tool for monitoring the health of concrete structures.
    • Download: (64.10Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Concrete Crack Assessment Using Digital Image Processing and 3D Scene Reconstruction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4241117
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorYu-Fei Liu
    contributor authorSoojin Cho
    contributor authorB. F. Spencer
    contributor authorJian-Sheng Fan
    date accessioned2017-12-16T09:17:59Z
    date available2017-12-16T09:17:59Z
    date issued2016
    identifier other%28ASCE%29CP.1943-5487.0000446.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4241117
    description abstractTraditional crack assessment methods for concrete structures are time consuming and produce subjective results. The development of a means for automated assessment employing digital image processing offers high potential for practical implementation. However, two problems in two-dimensional (2D) image processing hinder direct application for crack assessment, as follows: (1) the image used for the digital image processing has to be taken perpendicular to the surface of the concrete structure, and (2) the working distance used in retrieving the imaging model has to be measured each time. To address these problems, this paper proposes a combination of 2D image processing and three-dimensional (3D) scene reconstruction to locate the 3D position of crack edges. In the proposed algorithm, first the precise crack information is obtained from the 2D images after noise elimination and crack detection using image processing techniques. Then, 3D reconstruction is conducted employing several crack images to build the 3D scene, and the surfaces in the scene are estimated by plane fitting using the 3D point cloud. Subsequently, the crack is projected from the 2D image onto the 3D concrete surface with a crack so that the precise 3D coordinates of the crack edges are found. The final crack assessment results are given using the scaled 3D crack information. Field tests were conducted on a concrete wall including single and multiple concrete surface tests, and a concrete flange with complex crack shape, respectively. The results indicate that the proposed approach overcomes existing hurdles to offer a new tool for monitoring the health of concrete structures.
    publisherAmerican Society of Civil Engineers
    titleConcrete Crack Assessment Using Digital Image Processing and 3D Scene Reconstruction
    typeJournal Paper
    journal volume30
    journal issue1
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000446
    treeJournal of Computing in Civil Engineering:;2016:;Volume ( 030 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian