YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development and Validation of the HDI Matrix Method for Fluid–Dam Interaction

    Source: Journal of Computing in Civil Engineering:;2017:;Volume ( 031 ):;issue: 005
    Author:
    Violeta Mircevska
    ,
    Miroslav Nastev
    ,
    Viktor Hristovski
    ,
    Sujan Malla
    ,
    Mihail Garevski
    DOI: 10.1061/(ASCE)CP.1943-5487.0000684
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents the theoretical development of a practical numerical method for analysis of complex dam-reservoir interaction problems. The proposed approach takes advantage of the combination of boundary and finite element methods (BEM-FEM) for an independent analysis of two physically distinct dam structure and reservoir-foundation domains. It involves the matrix of hydrodynamic influence (HDI) based on the application of the virtual work principle to the fluid (BEM) domain to calculate the hydrodynamic forces (HDF). Equilibrium between hydrodynamic forces and absolute accelerations is obtained by repetitive solution of the dynamic equation for the FEM domain only until the Euclidean norm of the vector of residual errors at the interface nodes becomes smaller than the prescribed tolerance. The method allows effective consideration of compound wave-field of compressive and dilatational waves and wave-scattering effects for a more realistic evaluation of the interaction phenomenon. A validation procedure is presented through comparisons with analytical and numerical solutions of simple two-dimensional (2D) and three-dimensional (3D) problems. A realistic 3D example of a concrete gravity dam subjected to seismic excitation is given at the end. The method yields fast and accurate results without the necessity of time-consuming iterative computation of dependent variables in both domains.
    • Download: (1.436Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development and Validation of the HDI Matrix Method for Fluid–Dam Interaction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4241028
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorVioleta Mircevska
    contributor authorMiroslav Nastev
    contributor authorViktor Hristovski
    contributor authorSujan Malla
    contributor authorMihail Garevski
    date accessioned2017-12-16T09:17:27Z
    date available2017-12-16T09:17:27Z
    date issued2017
    identifier other%28ASCE%29CP.1943-5487.0000684.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4241028
    description abstractThis paper presents the theoretical development of a practical numerical method for analysis of complex dam-reservoir interaction problems. The proposed approach takes advantage of the combination of boundary and finite element methods (BEM-FEM) for an independent analysis of two physically distinct dam structure and reservoir-foundation domains. It involves the matrix of hydrodynamic influence (HDI) based on the application of the virtual work principle to the fluid (BEM) domain to calculate the hydrodynamic forces (HDF). Equilibrium between hydrodynamic forces and absolute accelerations is obtained by repetitive solution of the dynamic equation for the FEM domain only until the Euclidean norm of the vector of residual errors at the interface nodes becomes smaller than the prescribed tolerance. The method allows effective consideration of compound wave-field of compressive and dilatational waves and wave-scattering effects for a more realistic evaluation of the interaction phenomenon. A validation procedure is presented through comparisons with analytical and numerical solutions of simple two-dimensional (2D) and three-dimensional (3D) problems. A realistic 3D example of a concrete gravity dam subjected to seismic excitation is given at the end. The method yields fast and accurate results without the necessity of time-consuming iterative computation of dependent variables in both domains.
    publisherAmerican Society of Civil Engineers
    titleDevelopment and Validation of the HDI Matrix Method for Fluid–Dam Interaction
    typeJournal Paper
    journal volume31
    journal issue5
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000684
    treeJournal of Computing in Civil Engineering:;2017:;Volume ( 031 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian