YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Implications of Climate Change on Water Budgets and Reservoir Water Harvesting of Nuuanu Area Watersheds, Oahu, Hawaii

    Source: Journal of Water Resources Planning and Management:;2017:;Volume ( 143 ):;issue: 011
    Author:
    Olkeba Tolessa Leta
    ,
    Aly I. El-Kadi
    ,
    Henrietta Dulai
    DOI: 10.1061/(ASCE)WR.1943-5452.0000839
    Publisher: American Society of Civil Engineers
    Abstract: Assessing freshwater availability under changing climate and land-use conditions is critical for tropical islands, where small watershed sizes and unique hydrological features mean that freshwater resources are very sensitive to these changes. The objective of this study is to assess the impact of climate change on the water budgets of the Nuuanu area watersheds (NAW), Oahu, Hawaii, and most importantly, on the potential of water harvesting from Nuuanu Reservoir 4 (NR4). The harvest approach concerns water diversion from the reservoir for artificially supplementing groundwater recharge through injection into the subsurface. Following calibration and validation at multiple streamflow gauging stations across the watershed, the soil and water assessment tool (SWAT) model was applied to assess current and future water availability in the NR4. Multiple statistical evaluation criteria were used to demonstrate that SWAT adequately reproduced the observed daily streamflow hydrographs at all stations. Climate change analyses used the representative concentration pathways (RCP) 4.5 and 8.5 scenarios. The reported analysis suggests that the water-budget components of the NAW will generally be adversely affected by climate change. Compared to the baseline of 35 years, the amount of water available from the NR4 for harvesting will decrease by as much as 27%, and the corresponding outflow values will decrease by as much as 37%. Despite future temperature increases, the actual monthly watershed-scale evapotranspiration will decrease because of the overall decrease in rainfall and soil-moisture availability. Rainfall has the dominant control over the magnitude of water-budget components and harvesting compared with temperature and solar radiation. This study presents a blueprint for surface-water-harvesting scenarios, which may become a necessity across the Pacific and other islands in the future.
    • Download: (3.022Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Implications of Climate Change on Water Budgets and Reservoir Water Harvesting of Nuuanu Area Watersheds, Oahu, Hawaii

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4240974
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorOlkeba Tolessa Leta
    contributor authorAly I. El-Kadi
    contributor authorHenrietta Dulai
    date accessioned2017-12-16T09:17:11Z
    date available2017-12-16T09:17:11Z
    date issued2017
    identifier other%28ASCE%29WR.1943-5452.0000839.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4240974
    description abstractAssessing freshwater availability under changing climate and land-use conditions is critical for tropical islands, where small watershed sizes and unique hydrological features mean that freshwater resources are very sensitive to these changes. The objective of this study is to assess the impact of climate change on the water budgets of the Nuuanu area watersheds (NAW), Oahu, Hawaii, and most importantly, on the potential of water harvesting from Nuuanu Reservoir 4 (NR4). The harvest approach concerns water diversion from the reservoir for artificially supplementing groundwater recharge through injection into the subsurface. Following calibration and validation at multiple streamflow gauging stations across the watershed, the soil and water assessment tool (SWAT) model was applied to assess current and future water availability in the NR4. Multiple statistical evaluation criteria were used to demonstrate that SWAT adequately reproduced the observed daily streamflow hydrographs at all stations. Climate change analyses used the representative concentration pathways (RCP) 4.5 and 8.5 scenarios. The reported analysis suggests that the water-budget components of the NAW will generally be adversely affected by climate change. Compared to the baseline of 35 years, the amount of water available from the NR4 for harvesting will decrease by as much as 27%, and the corresponding outflow values will decrease by as much as 37%. Despite future temperature increases, the actual monthly watershed-scale evapotranspiration will decrease because of the overall decrease in rainfall and soil-moisture availability. Rainfall has the dominant control over the magnitude of water-budget components and harvesting compared with temperature and solar radiation. This study presents a blueprint for surface-water-harvesting scenarios, which may become a necessity across the Pacific and other islands in the future.
    publisherAmerican Society of Civil Engineers
    titleImplications of Climate Change on Water Budgets and Reservoir Water Harvesting of Nuuanu Area Watersheds, Oahu, Hawaii
    typeJournal Paper
    journal volume143
    journal issue11
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0000839
    treeJournal of Water Resources Planning and Management:;2017:;Volume ( 143 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian