YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Cold Regions Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Cold Regions Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Resilient Behavior of Unbound Granular Materials Subjected to a Closed-System Freeze-Thaw Cycle

    Source: Journal of Cold Regions Engineering:;2018:;Volume ( 032 ):;issue: 001
    Author:
    Jenny Liu
    ,
    Xiong Zhang
    ,
    Lin Li
    ,
    Steve Saboundjian
    DOI: 10.1061/(ASCE)CR.1943-5495.0000142
    Publisher: American Society of Civil Engineers
    Abstract: The resilient modulus of a base course granular material is an important input parameter for pavement design and analysis. In recent decades, numerous studies have been performed to characterize and model the resilient behavior of base course materials under unfrozen conditions. In cold regions, frost heaving and subsequent thawing significantly affect the resilient behavior of base course materials. Due to the complex nature of the problem, relatively less effort was dedicated to characterize and model the resilient behavior of base course materials after seasonal freeze-thaw cycles. Among the limited studies, very often the soil specimens were prepared in an open system with free water access to simulate the frost heave, which represented the worst-case scenario in terms of stiffness reduction during thawing. Sometimes omnidirectional freeze tests were performed to simplify the testing procedures. In reality, soils in the field often experience one-dimensional freeze and thaw. When the permeability of the soil is very low, the groundwater table is far from the freezing front, or the freezing temperature gradient is high, the freezing process can be considered to be in a closed system (i.e., limited or no water exchange). The closed system represented the best-case scenario in terms of stiffness reduction during thawing, which has rarely been investigated. Hence, an in-depth understanding of the seasonal resilient behavior of base course materials in a closed system is essential for cold region pavement design and analysis. In this study, repeated loading triaxial tests were performed to investigate the effects of nonplastic fines content, moisture content, temperature, thermal gradient, and freeze-thaw cycling on the resilient modulus of unbound granular base course materials under seasonal frost conditions. Soil specimens were prepared in the laboratory using a one-dimensional frost heave chamber with temperature–thermal gradient control. Specimens were subjected to a closed-system freezing (undrained) condition. Test results were analyzed and discussed, and models were developed to predict granular materials’ resilient moduli as a function of the state of stress, temperature, moisture, and fines content to complement the previous study.
    • Download: (1.135Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Resilient Behavior of Unbound Granular Materials Subjected to a Closed-System Freeze-Thaw Cycle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4240971
    Collections
    • Journal of Cold Regions Engineering

    Show full item record

    contributor authorJenny Liu
    contributor authorXiong Zhang
    contributor authorLin Li
    contributor authorSteve Saboundjian
    date accessioned2017-12-16T09:17:11Z
    date available2017-12-16T09:17:11Z
    date issued2018
    identifier other%28ASCE%29CR.1943-5495.0000142.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4240971
    description abstractThe resilient modulus of a base course granular material is an important input parameter for pavement design and analysis. In recent decades, numerous studies have been performed to characterize and model the resilient behavior of base course materials under unfrozen conditions. In cold regions, frost heaving and subsequent thawing significantly affect the resilient behavior of base course materials. Due to the complex nature of the problem, relatively less effort was dedicated to characterize and model the resilient behavior of base course materials after seasonal freeze-thaw cycles. Among the limited studies, very often the soil specimens were prepared in an open system with free water access to simulate the frost heave, which represented the worst-case scenario in terms of stiffness reduction during thawing. Sometimes omnidirectional freeze tests were performed to simplify the testing procedures. In reality, soils in the field often experience one-dimensional freeze and thaw. When the permeability of the soil is very low, the groundwater table is far from the freezing front, or the freezing temperature gradient is high, the freezing process can be considered to be in a closed system (i.e., limited or no water exchange). The closed system represented the best-case scenario in terms of stiffness reduction during thawing, which has rarely been investigated. Hence, an in-depth understanding of the seasonal resilient behavior of base course materials in a closed system is essential for cold region pavement design and analysis. In this study, repeated loading triaxial tests were performed to investigate the effects of nonplastic fines content, moisture content, temperature, thermal gradient, and freeze-thaw cycling on the resilient modulus of unbound granular base course materials under seasonal frost conditions. Soil specimens were prepared in the laboratory using a one-dimensional frost heave chamber with temperature–thermal gradient control. Specimens were subjected to a closed-system freezing (undrained) condition. Test results were analyzed and discussed, and models were developed to predict granular materials’ resilient moduli as a function of the state of stress, temperature, moisture, and fines content to complement the previous study.
    publisherAmerican Society of Civil Engineers
    titleResilient Behavior of Unbound Granular Materials Subjected to a Closed-System Freeze-Thaw Cycle
    typeJournal Paper
    journal volume32
    journal issue1
    journal titleJournal of Cold Regions Engineering
    identifier doi10.1061/(ASCE)CR.1943-5495.0000142
    treeJournal of Cold Regions Engineering:;2018:;Volume ( 032 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian