YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impacts of Climate Change and Urbanization on Groundwater Resources in a Barrier Island

    Source: Journal of Environmental Engineering:;2016:;Volume ( 142 ):;issue: 012
    Author:
    Sun Woo Chang
    ,
    Katherine Nemec
    ,
    Latif Kalin
    ,
    T. Prabhakar Clement
    DOI: 10.1061/(ASCE)EE.1943-7870.0001123
    Publisher: American Society of Civil Engineers
    Abstract: Coastal freshwater aquifers are highly vulnerable to climate change and other anthropogenic environmental impacts. Therefore, managing coastal freshwater for future use requires critical planning. This is especially true for small barrier islands where, in most cases, groundwater could be the only freshwater resource. In this study, the combined effects of climate change, land-use changes, and increased groundwater pumping on freshwater resources of a barrier island were studied. A case study was completed using the field data available for Dauphin Island, a small barrier island located in Alabama, U.S., and by using the simulation data generated from multiple water-resource-management models. Soil and Water Assessment Tool (SWAT) simulations provided recharge estimates under various future land use/land cover and climate-change scenarios. Downscaled global circulation model provided precipitation and temperature patterns for the period 2011–2030. The recharge estimates from SWAT were then used as input in a numerical groundwater model to evaluate saltwater-intrusion effects and forecast the changes in freshwater storage within the island aquifer system. Various groundwater-management scenarios were simulated using the MODFLOW-family computer code SEAWAT to assess the sensitivity of the groundwater system to increased pumping rates and decreased recharge due to climate change and/or future developments. SEAWAT was used to predict the lateral saltwater-intrusion effects and its impacts on groundwater quality and freshwater volume. The simulation results show that the saltwater wedge would advance laterally under all future climate-change scenarios. These results indicate that the shallow unconfined aquifer might not be able to sustain any significant future population growth, especially under adverse climate-change conditions. Analysis of changes in the volume of freshwater lens provided a broader understanding of the coupled effects of climatic and anthropogenic changes on freshwater storage and this information can be used to better manage Dauphin Island’s unconfined groundwater system.
    • Download: (5.079Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impacts of Climate Change and Urbanization on Groundwater Resources in a Barrier Island

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4240922
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorSun Woo Chang
    contributor authorKatherine Nemec
    contributor authorLatif Kalin
    contributor authorT. Prabhakar Clement
    date accessioned2017-12-16T09:16:56Z
    date available2017-12-16T09:16:56Z
    date issued2016
    identifier other%28ASCE%29EE.1943-7870.0001123.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4240922
    description abstractCoastal freshwater aquifers are highly vulnerable to climate change and other anthropogenic environmental impacts. Therefore, managing coastal freshwater for future use requires critical planning. This is especially true for small barrier islands where, in most cases, groundwater could be the only freshwater resource. In this study, the combined effects of climate change, land-use changes, and increased groundwater pumping on freshwater resources of a barrier island were studied. A case study was completed using the field data available for Dauphin Island, a small barrier island located in Alabama, U.S., and by using the simulation data generated from multiple water-resource-management models. Soil and Water Assessment Tool (SWAT) simulations provided recharge estimates under various future land use/land cover and climate-change scenarios. Downscaled global circulation model provided precipitation and temperature patterns for the period 2011–2030. The recharge estimates from SWAT were then used as input in a numerical groundwater model to evaluate saltwater-intrusion effects and forecast the changes in freshwater storage within the island aquifer system. Various groundwater-management scenarios were simulated using the MODFLOW-family computer code SEAWAT to assess the sensitivity of the groundwater system to increased pumping rates and decreased recharge due to climate change and/or future developments. SEAWAT was used to predict the lateral saltwater-intrusion effects and its impacts on groundwater quality and freshwater volume. The simulation results show that the saltwater wedge would advance laterally under all future climate-change scenarios. These results indicate that the shallow unconfined aquifer might not be able to sustain any significant future population growth, especially under adverse climate-change conditions. Analysis of changes in the volume of freshwater lens provided a broader understanding of the coupled effects of climatic and anthropogenic changes on freshwater storage and this information can be used to better manage Dauphin Island’s unconfined groundwater system.
    publisherAmerican Society of Civil Engineers
    titleImpacts of Climate Change and Urbanization on Groundwater Resources in a Barrier Island
    typeJournal Paper
    journal volume142
    journal issue12
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0001123
    treeJournal of Environmental Engineering:;2016:;Volume ( 142 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian