YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Internal Structure Quantification for Granular Constitutive Modeling

    Source: Journal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 004
    Author:
    Xia Li
    DOI: 10.1061/(ASCE)EM.1943-7889.0001118
    Publisher: American Society of Civil Engineers
    Abstract: The importance of internal structure on the stress-strain behavior of granular materials has been widely recognized. How to define the fabric tensor and use it in constitutive modeling, however, remains an open question. The definition of fabric tensor requires (1) identifying the key aspects of structure information, and (2) quantifying their impact on material strength and deformation. This paper addresses these issues by applying the homogenization theory to interpret the multiscale data obtained from the discrete element simulations. Numerical experiments have been carried out to test granular materials with different particle friction coefficients. More frictional particles tend to form fewer but larger void cells, leading to a larger sample void ratio. Upon shearing, they form more significant structure anisotropy and support higher force anisotropy, resulting in higher friction angle. Material strength and deformation have been explored on the local scale with the particle packing described by the void cell system. Three groups of fabric tensor are discussed herein. The first group is based on the contact vectors, which are the geometrical links between contact forces and material stress. Their relationship with material strength has been quantified by the Stress-Force-Fabric relationship. The second group is based on the statistics of individual void cell characteristics. Material dilatancy has been interpreted by tracing the void cell statistics during shearing. The last group is based on the void vectors, for their direct presence in the microstructural strain definition, including those based on the void vector probability density and mean void vector. Correlations among various fabric quantifications have been explored. The mean void vector length and the mean void cell area are parameters quantifying the internal structure size and strongly correlated with each other. Anisotropy indices defined based on contact normal density, void vector density, void vector length, and void cell orientation are found to be effective in characterizing loading-induced anisotropy. They are also closely correlated. An in-depth investigation on structural topology may help establish the correlation among different fabric descriptors and unify the fabric-tensor definition. Deformation bands have been observed to continuously form, develop, and disappear over a length scale of several tens of particle diameters. Its relation to and impact on material deformation is an area of future investigation.
    • Download: (3.467Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Internal Structure Quantification for Granular Constitutive Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4240621
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorXia Li
    date accessioned2017-12-16T09:15:38Z
    date available2017-12-16T09:15:38Z
    date issued2017
    identifier other%28ASCE%29EM.1943-7889.0001118.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4240621
    description abstractThe importance of internal structure on the stress-strain behavior of granular materials has been widely recognized. How to define the fabric tensor and use it in constitutive modeling, however, remains an open question. The definition of fabric tensor requires (1) identifying the key aspects of structure information, and (2) quantifying their impact on material strength and deformation. This paper addresses these issues by applying the homogenization theory to interpret the multiscale data obtained from the discrete element simulations. Numerical experiments have been carried out to test granular materials with different particle friction coefficients. More frictional particles tend to form fewer but larger void cells, leading to a larger sample void ratio. Upon shearing, they form more significant structure anisotropy and support higher force anisotropy, resulting in higher friction angle. Material strength and deformation have been explored on the local scale with the particle packing described by the void cell system. Three groups of fabric tensor are discussed herein. The first group is based on the contact vectors, which are the geometrical links between contact forces and material stress. Their relationship with material strength has been quantified by the Stress-Force-Fabric relationship. The second group is based on the statistics of individual void cell characteristics. Material dilatancy has been interpreted by tracing the void cell statistics during shearing. The last group is based on the void vectors, for their direct presence in the microstructural strain definition, including those based on the void vector probability density and mean void vector. Correlations among various fabric quantifications have been explored. The mean void vector length and the mean void cell area are parameters quantifying the internal structure size and strongly correlated with each other. Anisotropy indices defined based on contact normal density, void vector density, void vector length, and void cell orientation are found to be effective in characterizing loading-induced anisotropy. They are also closely correlated. An in-depth investigation on structural topology may help establish the correlation among different fabric descriptors and unify the fabric-tensor definition. Deformation bands have been observed to continuously form, develop, and disappear over a length scale of several tens of particle diameters. Its relation to and impact on material deformation is an area of future investigation.
    publisherAmerican Society of Civil Engineers
    titleInternal Structure Quantification for Granular Constitutive Modeling
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001118
    treeJournal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian