YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Direction-Independent Algorithm for Simulating Nonlinear Pressure Waves

    Source: Journal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 004
    Author:
    Egor V. Dontsov
    ,
    Bojan B. Guzina
    DOI: 10.1061/(ASCE)EM.1943-7889.0001195
    Publisher: American Society of Civil Engineers
    Abstract: This study formulates a frequency-domain computational scheme for simulating nonlinear wave propagation in a homogeneous medium governed by the Westervelt equation. The need for such numerical treatment arises in both engineering and medical imaging applications, where finite-amplitude pressure waves trigger nonlinear effects that may critically affect the sensory data. The primary advantage of the proposed approach over commonly used approximations, which account for nonlinear effects via the Burgers’ equation, lies in its ability to handle nonlinearities due to arbitrarily inclined incident waves, which becomes especially important for focused sound beams with large apertures, i.e., wide ranges of inclination angles. The proposed direction-independent algorithm has a direct mathematical connection with the Westervelt equation, as opposed to the Burger’s equation (that relies on the plane-wave hypothesis), and has computational efficiency that is comparable to that of the traditional approach. The developments are illustrated by numerical examples that verify the method against an analytical solution and highlight the significance of accurately modeling nonlinear waves.
    • Download: (460.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Direction-Independent Algorithm for Simulating Nonlinear Pressure Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4240557
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorEgor V. Dontsov
    contributor authorBojan B. Guzina
    date accessioned2017-12-16T09:15:18Z
    date available2017-12-16T09:15:18Z
    date issued2017
    identifier other%28ASCE%29EM.1943-7889.0001195.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4240557
    description abstractThis study formulates a frequency-domain computational scheme for simulating nonlinear wave propagation in a homogeneous medium governed by the Westervelt equation. The need for such numerical treatment arises in both engineering and medical imaging applications, where finite-amplitude pressure waves trigger nonlinear effects that may critically affect the sensory data. The primary advantage of the proposed approach over commonly used approximations, which account for nonlinear effects via the Burgers’ equation, lies in its ability to handle nonlinearities due to arbitrarily inclined incident waves, which becomes especially important for focused sound beams with large apertures, i.e., wide ranges of inclination angles. The proposed direction-independent algorithm has a direct mathematical connection with the Westervelt equation, as opposed to the Burger’s equation (that relies on the plane-wave hypothesis), and has computational efficiency that is comparable to that of the traditional approach. The developments are illustrated by numerical examples that verify the method against an analytical solution and highlight the significance of accurately modeling nonlinear waves.
    publisherAmerican Society of Civil Engineers
    titleDirection-Independent Algorithm for Simulating Nonlinear Pressure Waves
    typeJournal Paper
    journal volume143
    journal issue4
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001195
    treeJournal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian