YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Study of Crack Identification in Thick Beams with a Cracked Beam Element Model

    Source: Journal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 006
    Author:
    Chuanchuan Hou
    ,
    Yong Lu
    DOI: 10.1061/(ASCE)EM.1943-7889.0001215
    Publisher: American Society of Civil Engineers
    Abstract: Model-based crack identification in beam-like structures has been a classic problem. The authors have recently developed a framework to identify crack damage in beams based on a cracked beam element model, which stems from the local flexibility and fracture mechanics principles. This paper presents an experimental study on the cracked beam element model for crack damage identification in a physical testing environment. Five solid beam specimens were prepared with different numbers of cracks, and they were subjected to a modal testing and analysis procedure to extract the natural frequencies and mode shapes. The extracted modal data were then compared with the predicted counterparts using the cracked beam element model to verify the accuracy of the model. The extracted modal data were also employed to inversely identify the cracks with the cracked beam element model through a model updating procedure. Results indicate that all the cracks can be identified correctly with accurate crack depth and location information. To enhance the modal dataset for finite-element (FE) model updating, the artificial boundary condition (ABC) technique has also been applied on the test beams, and the incorporation of such frequencies proves to enhance the identification of cracks from the FE model updating.
    • Download: (715.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Study of Crack Identification in Thick Beams with a Cracked Beam Element Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4240546
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorChuanchuan Hou
    contributor authorYong Lu
    date accessioned2017-12-16T09:15:16Z
    date available2017-12-16T09:15:16Z
    date issued2017
    identifier other%28ASCE%29EM.1943-7889.0001215.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4240546
    description abstractModel-based crack identification in beam-like structures has been a classic problem. The authors have recently developed a framework to identify crack damage in beams based on a cracked beam element model, which stems from the local flexibility and fracture mechanics principles. This paper presents an experimental study on the cracked beam element model for crack damage identification in a physical testing environment. Five solid beam specimens were prepared with different numbers of cracks, and they were subjected to a modal testing and analysis procedure to extract the natural frequencies and mode shapes. The extracted modal data were then compared with the predicted counterparts using the cracked beam element model to verify the accuracy of the model. The extracted modal data were also employed to inversely identify the cracks with the cracked beam element model through a model updating procedure. Results indicate that all the cracks can be identified correctly with accurate crack depth and location information. To enhance the modal dataset for finite-element (FE) model updating, the artificial boundary condition (ABC) technique has also been applied on the test beams, and the incorporation of such frequencies proves to enhance the identification of cracks from the FE model updating.
    publisherAmerican Society of Civil Engineers
    titleExperimental Study of Crack Identification in Thick Beams with a Cracked Beam Element Model
    typeJournal Paper
    journal volume143
    journal issue6
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001215
    treeJournal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian