YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Description of Three-Dimensional Yield Surfaces by Cubic Polynomials

    Source: Journal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 011
    Author:
    Li-Wei Liu
    ,
    Hong-Ki Hong
    DOI: 10.1061/(ASCE)EM.1943-7889.0001347
    Publisher: American Society of Civil Engineers
    Abstract: A description of yield surfaces in the axial-torsional-hoop stress space, which is able to capture the yield surface expansion/contraction, translation, rotation, affine deformation, and distortion, is constructed under a three-dimensional point of view. Starting from the yield surface theory of cubic polynomials in two-dimensional spaces, the authors first clarify the relations between it and the Kurtyka and Życzkowski theory which exhibits excellent performance of fitting the experimental data of yield points in two-dimensional stress space. Because an arbitrary cubic polynomial does not guarantee that its zero-level locus is closed, the authors apply projective transformation of the Weierstrass normal form of cubic curves in the two-dimensional space in order to obtain closed cubic yield loci. Following the derivation of closed cubic yield loci, the authors investigate the convexity of the yield loci. Then the two-dimensional theory is extended into a standard formulation of convex closed cubic polynomial in the three-dimensional stress space with consideration of preserving the closure and the convexity of yield surface, and the orthotropic and isotropic symmetry of the convex closed cubic polynomial is explored. Furthermore, a geometrically meaningful identification with three stages is proposed to estimate the values of coefficients of the polynomials from the experimental data of yield points in the axial-torsional-hoop stress space. Validation is performed by checking the estimated results of yield surface and experimental yield points and shows that almost all probed yield points are located directly on or near the estimated evolving yield surfaces. Therefore the convex closed cubic polynomial and three-stage identification provides reliable visualization of the yield surfaces which unite individual yield points to present the global information.
    • Download: (1.045Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Description of Three-Dimensional Yield Surfaces by Cubic Polynomials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4240440
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorLi-Wei Liu
    contributor authorHong-Ki Hong
    date accessioned2017-12-16T09:14:50Z
    date available2017-12-16T09:14:50Z
    date issued2017
    identifier other%28ASCE%29EM.1943-7889.0001347.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4240440
    description abstractA description of yield surfaces in the axial-torsional-hoop stress space, which is able to capture the yield surface expansion/contraction, translation, rotation, affine deformation, and distortion, is constructed under a three-dimensional point of view. Starting from the yield surface theory of cubic polynomials in two-dimensional spaces, the authors first clarify the relations between it and the Kurtyka and Życzkowski theory which exhibits excellent performance of fitting the experimental data of yield points in two-dimensional stress space. Because an arbitrary cubic polynomial does not guarantee that its zero-level locus is closed, the authors apply projective transformation of the Weierstrass normal form of cubic curves in the two-dimensional space in order to obtain closed cubic yield loci. Following the derivation of closed cubic yield loci, the authors investigate the convexity of the yield loci. Then the two-dimensional theory is extended into a standard formulation of convex closed cubic polynomial in the three-dimensional stress space with consideration of preserving the closure and the convexity of yield surface, and the orthotropic and isotropic symmetry of the convex closed cubic polynomial is explored. Furthermore, a geometrically meaningful identification with three stages is proposed to estimate the values of coefficients of the polynomials from the experimental data of yield points in the axial-torsional-hoop stress space. Validation is performed by checking the estimated results of yield surface and experimental yield points and shows that almost all probed yield points are located directly on or near the estimated evolving yield surfaces. Therefore the convex closed cubic polynomial and three-stage identification provides reliable visualization of the yield surfaces which unite individual yield points to present the global information.
    publisherAmerican Society of Civil Engineers
    titleA Description of Three-Dimensional Yield Surfaces by Cubic Polynomials
    typeJournal Paper
    journal volume143
    journal issue11
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001347
    treeJournal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian