YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanistic Composition–Specific Fatigue Life of Asphalt Pavements

    Source: Journal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 012
    Author:
    Xue Luo
    ,
    Fan Gu
    ,
    Robert L. Lytton
    DOI: 10.1061/(ASCE)EM.1943-7889.0001355
    Publisher: American Society of Civil Engineers
    Abstract: Fatigue life is a key factor for designing an asphalt pavement, which is usually determined by a fatigue test with a failure criterion. Most of the existing criteria lack a direct identification of fatigue failure as the cracked area reaches its maximum value, which is specific for each asphalt mixture and depends on its own composition. This paper fills this gap by proposing the usage of damage density, and derives the fatigue life based on the visco-elasto-plastic form of Paris’ law with damage density (or modified Paris’ law) for an asphalt pavement. Furthermore, it provides both the test-based calculation and nontest estimation for the fatigue life. As the starting of fatigue damage, the crack initiation point, also known as endurance limit, is first derived to be a simplified version of the energy-based crack initiation criterion for visco-elasto-plastic materials. As the ending of fatigue damage, the number of load cycles to failure, or fatigue life, is derived from the modified Paris’ law and calculated using the data from the two mechanics-based test protocols, one for microcracking and the other for macrocracking. To derive the fatigue life from the modified Paris’ law, a characteristic curve that relates the pseudo J-integral to the damage density by the coefficients r and q is defined in this study. It takes into account the loading level and structure of a tested specimen or a field pavement. Based on the data analyzed, a strong correlation is found between r and q. In addition, a prediction model is developed for q using simple mixture and pavement design information. The simplified energy-based crack initiation criterion allows a quick estimate of endurance limits using the mixture modulus, surface energy, and air void content. The fatigue lives of 47 asphalt mixtures with different compositions are calculated using the test data, which are reasonable and vary with the binder type, air void content, aging period, and loading level. Moreover, with the discovery of r and q, the fatigue life can be readily estimated without testing by knowing the asphalt binder type and content, aggregate gradation, air void content, mixture modulus, surface layer thickness, and the traffic level. The case studies are presented as examples to demonstrate the sensitivity of the proposed approach as well as the procedure to determine fatigue lives for field pavements. The predicted fatigue lives were verified by field fatigue observations.
    • Download: (1.890Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanistic Composition–Specific Fatigue Life of Asphalt Pavements

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4240433
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorXue Luo
    contributor authorFan Gu
    contributor authorRobert L. Lytton
    date accessioned2017-12-16T09:14:49Z
    date available2017-12-16T09:14:49Z
    date issued2017
    identifier other%28ASCE%29EM.1943-7889.0001355.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4240433
    description abstractFatigue life is a key factor for designing an asphalt pavement, which is usually determined by a fatigue test with a failure criterion. Most of the existing criteria lack a direct identification of fatigue failure as the cracked area reaches its maximum value, which is specific for each asphalt mixture and depends on its own composition. This paper fills this gap by proposing the usage of damage density, and derives the fatigue life based on the visco-elasto-plastic form of Paris’ law with damage density (or modified Paris’ law) for an asphalt pavement. Furthermore, it provides both the test-based calculation and nontest estimation for the fatigue life. As the starting of fatigue damage, the crack initiation point, also known as endurance limit, is first derived to be a simplified version of the energy-based crack initiation criterion for visco-elasto-plastic materials. As the ending of fatigue damage, the number of load cycles to failure, or fatigue life, is derived from the modified Paris’ law and calculated using the data from the two mechanics-based test protocols, one for microcracking and the other for macrocracking. To derive the fatigue life from the modified Paris’ law, a characteristic curve that relates the pseudo J-integral to the damage density by the coefficients r and q is defined in this study. It takes into account the loading level and structure of a tested specimen or a field pavement. Based on the data analyzed, a strong correlation is found between r and q. In addition, a prediction model is developed for q using simple mixture and pavement design information. The simplified energy-based crack initiation criterion allows a quick estimate of endurance limits using the mixture modulus, surface energy, and air void content. The fatigue lives of 47 asphalt mixtures with different compositions are calculated using the test data, which are reasonable and vary with the binder type, air void content, aging period, and loading level. Moreover, with the discovery of r and q, the fatigue life can be readily estimated without testing by knowing the asphalt binder type and content, aggregate gradation, air void content, mixture modulus, surface layer thickness, and the traffic level. The case studies are presented as examples to demonstrate the sensitivity of the proposed approach as well as the procedure to determine fatigue lives for field pavements. The predicted fatigue lives were verified by field fatigue observations.
    publisherAmerican Society of Civil Engineers
    titleMechanistic Composition–Specific Fatigue Life of Asphalt Pavements
    typeJournal Paper
    journal volume143
    journal issue12
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001355
    treeJournal of Engineering Mechanics:;2017:;Volume ( 143 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian