Benefits of Enabling Technologies for the ICE and Sharing Strategies in a CHP System for Residential ApplicationsSource: Journal of Energy Engineering:;2017:;Volume ( 143 ):;issue: 004DOI: 10.1061/(ASCE)EY.1943-7897.0000434Publisher: American Society of Civil Engineers
Abstract: In this paper, a detailed survey has been carried out in order to evaluate the performance of a micro combined heat and power (CHP) system, based on an internal combustion engine (ICE) fed with natural gas as the prime mover. In particular, several operating modes of the micro combined heat and power system are proposed to satisfy the electric load demand deriving from civil users. These operating modes consider a variable number of users and prime movers, as well as a variable strategy of load sharing among them. Moreover, the analysis takes into account the utilization of an electric energy storage system and a converter allowing the operation of the engine at variable speed as enabling technologies. The comparison has been done using as input a statistical profile of domestic electric load. The results, compared with the performance of the conventional systems, have highlighted a maximum natural gas savings up to 22% with consequent reduction of carbon dioxide emissions. Moreover, the results of simulations show that the number of engines and the engine operation at variable speed determines the greatest benefits on fuel consumption, followed by the utilization of an electric energy storage system. The load-sharing strategy, among the operating engines, has, on the contrary, a secondary effect.
|
Collections
Show full item record
| contributor author | Antonio Paolo Carlucci | |
| contributor author | Vincenzo de Monte | |
| contributor author | Arturo de Risi | |
| contributor author | Luciano Strafella | |
| date accessioned | 2017-12-16T09:14:07Z | |
| date available | 2017-12-16T09:14:07Z | |
| date issued | 2017 | |
| identifier other | %28ASCE%29EY.1943-7897.0000434.pdf | |
| identifier uri | http://138.201.223.254:8080/yetl1/handle/yetl/4240295 | |
| description abstract | In this paper, a detailed survey has been carried out in order to evaluate the performance of a micro combined heat and power (CHP) system, based on an internal combustion engine (ICE) fed with natural gas as the prime mover. In particular, several operating modes of the micro combined heat and power system are proposed to satisfy the electric load demand deriving from civil users. These operating modes consider a variable number of users and prime movers, as well as a variable strategy of load sharing among them. Moreover, the analysis takes into account the utilization of an electric energy storage system and a converter allowing the operation of the engine at variable speed as enabling technologies. The comparison has been done using as input a statistical profile of domestic electric load. The results, compared with the performance of the conventional systems, have highlighted a maximum natural gas savings up to 22% with consequent reduction of carbon dioxide emissions. Moreover, the results of simulations show that the number of engines and the engine operation at variable speed determines the greatest benefits on fuel consumption, followed by the utilization of an electric energy storage system. The load-sharing strategy, among the operating engines, has, on the contrary, a secondary effect. | |
| publisher | American Society of Civil Engineers | |
| title | Benefits of Enabling Technologies for the ICE and Sharing Strategies in a CHP System for Residential Applications | |
| type | Journal Paper | |
| journal volume | 143 | |
| journal issue | 4 | |
| journal title | Journal of Energy Engineering | |
| identifier doi | 10.1061/(ASCE)EY.1943-7897.0000434 | |
| tree | Journal of Energy Engineering:;2017:;Volume ( 143 ):;issue: 004 | |
| contenttype | Fulltext |