YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Infragravity Seiches in a Small Harbor

    Source: Journal of Waterway, Port, Coastal, and Ocean Engineering:;2017:;Volume ( 143 ):;issue: 005
    Author:
    G. Cuomo
    ,
    R. T. Guza
    DOI: 10.1061/(ASCE)WW.1943-5460.0000392
    Publisher: American Society of Civil Engineers
    Abstract: A method is developed to estimate harbor seiche at Marina di Carrara, Italy, from the properties of wind-generated incident waves outside the harbor. A linear model of the spatial structure of amplified seiche modes is combined with empirical estimates of the response of each mode to variable incident wave forcing. These empirical coefficients parameterize the complex nonlinear transfer of energy from wind waves to lower frequency seiche. As at other small harbors (<1 km2 surface area) on ocean coasts, and consistent with previous analyses at Carrara, the observed seiche is relatively energetic at several periods between about 1 and 15 min that are highly amplified theoretically, and the spatial structure of modeled and observed seiches agree as well. The longest seiche (≈15 min) mode is almost spatially uniform within the harbor and dominates with low-energy, short-period incident wind waves (measured 1 km offshore of the harbor). Increased wave energy and longer periods excite shorter period (1–3 min) seiche modes with more complex spatial structure, including small areas of high amplification, which have led to operational issues. The energy in each of the six most energetic seiche modes is related in this paper empirically to offshore incident wind wave height and peak period, allowing detailed predictions of harbor seiche from routine wind wave forecasts. The approach appears applicable to relatively small, shallow harbors with reflective quay walls, in which the exterior harbor mouth is exposed, and the interior sheltered from energetic wind-generated waves.
    • Download: (2.492Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Infragravity Seiches in a Small Harbor

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4240229
    Collections
    • Journal of Waterway, Port, Coastal, and Ocean Engineering

    Show full item record

    contributor authorG. Cuomo
    contributor authorR. T. Guza
    date accessioned2017-12-16T09:13:53Z
    date available2017-12-16T09:13:53Z
    date issued2017
    identifier other%28ASCE%29WW.1943-5460.0000392.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4240229
    description abstractA method is developed to estimate harbor seiche at Marina di Carrara, Italy, from the properties of wind-generated incident waves outside the harbor. A linear model of the spatial structure of amplified seiche modes is combined with empirical estimates of the response of each mode to variable incident wave forcing. These empirical coefficients parameterize the complex nonlinear transfer of energy from wind waves to lower frequency seiche. As at other small harbors (<1 km2 surface area) on ocean coasts, and consistent with previous analyses at Carrara, the observed seiche is relatively energetic at several periods between about 1 and 15 min that are highly amplified theoretically, and the spatial structure of modeled and observed seiches agree as well. The longest seiche (≈15 min) mode is almost spatially uniform within the harbor and dominates with low-energy, short-period incident wind waves (measured 1 km offshore of the harbor). Increased wave energy and longer periods excite shorter period (1–3 min) seiche modes with more complex spatial structure, including small areas of high amplification, which have led to operational issues. The energy in each of the six most energetic seiche modes is related in this paper empirically to offshore incident wind wave height and peak period, allowing detailed predictions of harbor seiche from routine wind wave forecasts. The approach appears applicable to relatively small, shallow harbors with reflective quay walls, in which the exterior harbor mouth is exposed, and the interior sheltered from energetic wind-generated waves.
    publisherAmerican Society of Civil Engineers
    titleInfragravity Seiches in a Small Harbor
    typeJournal Paper
    journal volume143
    journal issue5
    journal titleJournal of Waterway, Port, Coastal, and Ocean Engineering
    identifier doi10.1061/(ASCE)WW.1943-5460.0000392
    treeJournal of Waterway, Port, Coastal, and Ocean Engineering:;2017:;Volume ( 143 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian