YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Pipelines Subjected to Fault Movement in Dry and Unsaturated Soils

    Source: International Journal of Geomechanics:;2016:;Volume ( 016 ):;issue: 005
    Author:
    D. J. Robert
    ,
    K. Soga
    ,
    T. D. O’Rourke
    DOI: 10.1061/(ASCE)GM.1943-5622.0000548
    Publisher: American Society of Civil Engineers
    Abstract: Because pipelines traverse large geographical areas, they frequently must cross active faults when constructed in locations vulnerable to earthquakes. In this study, the authors performed three-dimensional (3D) finite-element analyses to investigate the behavior of buried pipe subject to strike-slip fault movement in dry sand and, more realistically, in partially saturated sand. The performance of the finite-element model was first validated by comparing the computed results with the data from the full-scale experiments at Cornell University. The analysis was then extended by varying the initial conditions of the sand (e.g., sand type, density, moisture content), pipe material, pipe burial depth, and pipeline–fault-rupture inclination to assess the effect of these parameters on the soil loads applied to the pipe and the corresponding deformations. On the basis of the simulation results, the authors propose a soil–structure interaction mechanism for pipelines crossing active faults. The authors also propose design recommendations for the mitigation of ground-deformation effects at buried pipeline crossings of strike-slip faults.
    • Download: (4.059Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Pipelines Subjected to Fault Movement in Dry and Unsaturated Soils

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4240212
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorD. J. Robert
    contributor authorK. Soga
    contributor authorT. D. O’Rourke
    date accessioned2017-12-16T09:13:48Z
    date available2017-12-16T09:13:48Z
    date issued2016
    identifier other%28ASCE%29GM.1943-5622.0000548.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4240212
    description abstractBecause pipelines traverse large geographical areas, they frequently must cross active faults when constructed in locations vulnerable to earthquakes. In this study, the authors performed three-dimensional (3D) finite-element analyses to investigate the behavior of buried pipe subject to strike-slip fault movement in dry sand and, more realistically, in partially saturated sand. The performance of the finite-element model was first validated by comparing the computed results with the data from the full-scale experiments at Cornell University. The analysis was then extended by varying the initial conditions of the sand (e.g., sand type, density, moisture content), pipe material, pipe burial depth, and pipeline–fault-rupture inclination to assess the effect of these parameters on the soil loads applied to the pipe and the corresponding deformations. On the basis of the simulation results, the authors propose a soil–structure interaction mechanism for pipelines crossing active faults. The authors also propose design recommendations for the mitigation of ground-deformation effects at buried pipeline crossings of strike-slip faults.
    publisherAmerican Society of Civil Engineers
    titlePipelines Subjected to Fault Movement in Dry and Unsaturated Soils
    typeJournal Paper
    journal volume16
    journal issue5
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000548
    treeInternational Journal of Geomechanics:;2016:;Volume ( 016 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian