YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Constitutive Modeling of Kinematic Hardening Behavior of Saturated Anisotropic Soils

    Source: International Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 003
    Author:
    Cheng Zhou
    ,
    Serge Leroueil
    ,
    Mario Fafard
    ,
    Salim Ghorbel
    DOI: 10.1061/(ASCE)GM.1943-5622.0000732
    Publisher: American Society of Civil Engineers
    Abstract: A new three-dimensional cone-cap limit-state surface (LSS) model is proposed for cross-anisotropic, saturated, cohesionless, or cohesive remolded soils in consideration of anisotropic yielding and kinematic hardening. Matsuoka-Nakai failure criterion equations are adopted as the cone yield functions, and a new ellipse cap associated with Matsuoka-Nakai cone is developed. The anisotropic vertical and horizontal yield stresses (σaL′ and σrL′) are used as hardening variables to describe evolution of the fabric anisotropy. A smart kinematic hardening law is suggested without any addition of material parameters. With a nonassociated flow rule and because of the cone-cap connection on a constant p′ critical state plane, a smooth transition of a plastic strain increment vector at the cone-cap intersection points is ensured for the convenience of numerical calculation. There are very few parameters involved in the proposed model, and they are the same as those in the Cam-clay model, except one parameter for cross-anisotropy [slope of the anisotropic line (AL) KAL or horizontal yield stress σrL′]. They can be simply determined from conventional laboratory odometer and undrained triaxial compression experiments. The soil sample is simplified as a stress element, and the element numerical analysis results validate the test data very well. The model-predicted results well illustrate the size and shape modification of the cone-cap LSS of isotropic and cross-anisotropic soils as well as the kinematic hardening effect on the stress-strain behavior. Based on this model, other important features of natural soils, such as viscosity, microstructure, and partial saturation, can be further incorporated by extending the vertical and horizontal yield stresses (σaL′ and σrL′) in consideration of the effect of viscosity, microstructure, and partial saturation, respectively.
    • Download: (1.272Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Constitutive Modeling of Kinematic Hardening Behavior of Saturated Anisotropic Soils

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4240109
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorCheng Zhou
    contributor authorSerge Leroueil
    contributor authorMario Fafard
    contributor authorSalim Ghorbel
    date accessioned2017-12-16T09:13:20Z
    date available2017-12-16T09:13:20Z
    date issued2017
    identifier other%28ASCE%29GM.1943-5622.0000732.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4240109
    description abstractA new three-dimensional cone-cap limit-state surface (LSS) model is proposed for cross-anisotropic, saturated, cohesionless, or cohesive remolded soils in consideration of anisotropic yielding and kinematic hardening. Matsuoka-Nakai failure criterion equations are adopted as the cone yield functions, and a new ellipse cap associated with Matsuoka-Nakai cone is developed. The anisotropic vertical and horizontal yield stresses (σaL′ and σrL′) are used as hardening variables to describe evolution of the fabric anisotropy. A smart kinematic hardening law is suggested without any addition of material parameters. With a nonassociated flow rule and because of the cone-cap connection on a constant p′ critical state plane, a smooth transition of a plastic strain increment vector at the cone-cap intersection points is ensured for the convenience of numerical calculation. There are very few parameters involved in the proposed model, and they are the same as those in the Cam-clay model, except one parameter for cross-anisotropy [slope of the anisotropic line (AL) KAL or horizontal yield stress σrL′]. They can be simply determined from conventional laboratory odometer and undrained triaxial compression experiments. The soil sample is simplified as a stress element, and the element numerical analysis results validate the test data very well. The model-predicted results well illustrate the size and shape modification of the cone-cap LSS of isotropic and cross-anisotropic soils as well as the kinematic hardening effect on the stress-strain behavior. Based on this model, other important features of natural soils, such as viscosity, microstructure, and partial saturation, can be further incorporated by extending the vertical and horizontal yield stresses (σaL′ and σrL′) in consideration of the effect of viscosity, microstructure, and partial saturation, respectively.
    publisherAmerican Society of Civil Engineers
    titleConstitutive Modeling of Kinematic Hardening Behavior of Saturated Anisotropic Soils
    typeJournal Paper
    journal volume17
    journal issue3
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000732
    treeInternational Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian