YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Constitutive Modeling of Coarse-Grained Materials Incorporating the Effect of Particle Breakage on Critical State Behavior in a Framework of Generalized Plasticity

    Source: International Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 005
    Author:
    Mengcheng Liu
    ,
    Yufeng Gao
    DOI: 10.1061/(ASCE)GM.1943-5622.0000759
    Publisher: American Society of Civil Engineers
    Abstract: Coarse-grained materials (CGMs), including gravel, ballast, and rockfill material, exhibit a complicated stress-strain-volume change behavior, which is state dependent and influenced by considerable particle breakage even under relatively low pressure. A generalized plasticity model with a multiaxial formulation is developed for CGMs based on the critical state concept. The effect of particle breakage on their critical state behavior, including the nonlinear variation of both shear strength and void ratio with the mean effective stress, is fully incorporated with an implicit form in the current model. Two state functions and the corresponding virtual stress ratios are proposed to construct the new formulation of dilatancy, plastic flow, loading direction, and plastic modulus in the present model. The numerical analyses are performed for a series of true triaxial tests on CGMs, and model predictions are in good agreement with experimental results of true triaxial tests over a wide range of pressures. In summary, the proposed model is capable of accurately characterizing the highly nonlinear shear behavior due to particle breakage of CGMs, particularly including their strain softening/hardening and plastic dilation/contraction in various load paths.
    • Download: (6.972Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Constitutive Modeling of Coarse-Grained Materials Incorporating the Effect of Particle Breakage on Critical State Behavior in a Framework of Generalized Plasticity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4240079
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorMengcheng Liu
    contributor authorYufeng Gao
    date accessioned2017-12-16T09:13:11Z
    date available2017-12-16T09:13:11Z
    date issued2017
    identifier other%28ASCE%29GM.1943-5622.0000759.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4240079
    description abstractCoarse-grained materials (CGMs), including gravel, ballast, and rockfill material, exhibit a complicated stress-strain-volume change behavior, which is state dependent and influenced by considerable particle breakage even under relatively low pressure. A generalized plasticity model with a multiaxial formulation is developed for CGMs based on the critical state concept. The effect of particle breakage on their critical state behavior, including the nonlinear variation of both shear strength and void ratio with the mean effective stress, is fully incorporated with an implicit form in the current model. Two state functions and the corresponding virtual stress ratios are proposed to construct the new formulation of dilatancy, plastic flow, loading direction, and plastic modulus in the present model. The numerical analyses are performed for a series of true triaxial tests on CGMs, and model predictions are in good agreement with experimental results of true triaxial tests over a wide range of pressures. In summary, the proposed model is capable of accurately characterizing the highly nonlinear shear behavior due to particle breakage of CGMs, particularly including their strain softening/hardening and plastic dilation/contraction in various load paths.
    publisherAmerican Society of Civil Engineers
    titleConstitutive Modeling of Coarse-Grained Materials Incorporating the Effect of Particle Breakage on Critical State Behavior in a Framework of Generalized Plasticity
    typeJournal Paper
    journal volume17
    journal issue5
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000759
    treeInternational Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian