YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Anisotropic Diffusive-Advective Porochemoelasticity Modeling for Inclined Boreholes

    Source: International Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 003
    Author:
    Majed F. Kanfar
    ,
    Z. Chen
    ,
    S. S. Rahman
    DOI: 10.1061/(ASCE)GM.1943-5622.0000789
    Publisher: American Society of Civil Engineers
    Abstract: In chemically active rocks, pore pressure and stress state are not the only parameters that are governed by hydromechanical processes. Chemical osmosis is also responsible for changes in the effective stress caused by the presence of chemical potential between the reservoir and the borehole filled with drilling fluid. Subsurface rocks such as shales are highly anisotropic, and assuming an isotropic model will fail to provide an accurate depiction of the in situ stress state. In this work, governing equations for a fully coupled anisotropic nonlinear porochemoelasticity are developed. A numerical model using the FEM is constructed to simulate the drilling of an inclined borehole problem in an anisotropic and chemically active medium. The model accounts for solute transport contributed by diffusion and advection. Several sensitivity analyses are conducted to highlight different features of the chemohydromechanical model. Solute concentration, membrane efficiency, solute-diffusion coefficient, and advection are investigated. Results of this study show that the rock elastic anisotropy significantly enhances the stresses induced by the borehole excavation. Moreover, the presence of chemical potential has been shown to have a large bearing on the near wellbore stress state and pore pressure. It was demonstrated that this effect cannot be generalized and should be studied carefully on a case-by-case basis. Last, the model is used to analyze borehole stability for inclined boreholes under chemical, hydraulic, and mechanical loading.
    • Download: (2.743Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Anisotropic Diffusive-Advective Porochemoelasticity Modeling for Inclined Boreholes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4240049
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorMajed F. Kanfar
    contributor authorZ. Chen
    contributor authorS. S. Rahman
    date accessioned2017-12-16T09:13:00Z
    date available2017-12-16T09:13:00Z
    date issued2017
    identifier other%28ASCE%29GM.1943-5622.0000789.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4240049
    description abstractIn chemically active rocks, pore pressure and stress state are not the only parameters that are governed by hydromechanical processes. Chemical osmosis is also responsible for changes in the effective stress caused by the presence of chemical potential between the reservoir and the borehole filled with drilling fluid. Subsurface rocks such as shales are highly anisotropic, and assuming an isotropic model will fail to provide an accurate depiction of the in situ stress state. In this work, governing equations for a fully coupled anisotropic nonlinear porochemoelasticity are developed. A numerical model using the FEM is constructed to simulate the drilling of an inclined borehole problem in an anisotropic and chemically active medium. The model accounts for solute transport contributed by diffusion and advection. Several sensitivity analyses are conducted to highlight different features of the chemohydromechanical model. Solute concentration, membrane efficiency, solute-diffusion coefficient, and advection are investigated. Results of this study show that the rock elastic anisotropy significantly enhances the stresses induced by the borehole excavation. Moreover, the presence of chemical potential has been shown to have a large bearing on the near wellbore stress state and pore pressure. It was demonstrated that this effect cannot be generalized and should be studied carefully on a case-by-case basis. Last, the model is used to analyze borehole stability for inclined boreholes under chemical, hydraulic, and mechanical loading.
    publisherAmerican Society of Civil Engineers
    titleAnisotropic Diffusive-Advective Porochemoelasticity Modeling for Inclined Boreholes
    typeJournal Paper
    journal volume17
    journal issue3
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000789
    treeInternational Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian