YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dilatancy Relation for Overconsolidated Clay

    Source: International Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 005
    Author:
    Zhiwei Gao
    ,
    Jidong Zhao
    ,
    Zhen-Yu Yin
    DOI: 10.1061/(ASCE)GM.1943-5622.0000793
    Publisher: American Society of Civil Engineers
    Abstract: A distinct feature of overconsolidated (OC) clays is that their dilatancy behavior is dependent on the degree of overconsolidation. Typically, a heavily OC clay shows volume expansion, whereas a lightly OC clay exhibits volume contraction when subjected to shear. Proper characterization of the stress-dilatancy behavior proves to be important for constitutive modeling of OC clays. This paper presents a dilatancy relation in conjunction with a bounding surface or subloading surface model to simulate the behavior of OC clays. At the same stress ratio, the proposed relation can reasonably capture the relatively more dilative response for clay with a higher overconsolidation ratio (OCR). It may recover to the dilatancy relation of a modified Cam-clay (MCC) model when the soil becomes normally consolidated (NC). A demonstrative example is shown by integrating the dilatancy relation into a bounding surface model. With only three extra parameters in addition to those in the MCC model, the new model and the proposed dilatancy relation provide good predictions on the behavior of OC clay compared with experimental data.
    • Download: (967.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dilatancy Relation for Overconsolidated Clay

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4240045
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorZhiwei Gao
    contributor authorJidong Zhao
    contributor authorZhen-Yu Yin
    date accessioned2017-12-16T09:12:59Z
    date available2017-12-16T09:12:59Z
    date issued2017
    identifier other%28ASCE%29GM.1943-5622.0000793.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4240045
    description abstractA distinct feature of overconsolidated (OC) clays is that their dilatancy behavior is dependent on the degree of overconsolidation. Typically, a heavily OC clay shows volume expansion, whereas a lightly OC clay exhibits volume contraction when subjected to shear. Proper characterization of the stress-dilatancy behavior proves to be important for constitutive modeling of OC clays. This paper presents a dilatancy relation in conjunction with a bounding surface or subloading surface model to simulate the behavior of OC clays. At the same stress ratio, the proposed relation can reasonably capture the relatively more dilative response for clay with a higher overconsolidation ratio (OCR). It may recover to the dilatancy relation of a modified Cam-clay (MCC) model when the soil becomes normally consolidated (NC). A demonstrative example is shown by integrating the dilatancy relation into a bounding surface model. With only three extra parameters in addition to those in the MCC model, the new model and the proposed dilatancy relation provide good predictions on the behavior of OC clay compared with experimental data.
    publisherAmerican Society of Civil Engineers
    titleDilatancy Relation for Overconsolidated Clay
    typeJournal Paper
    journal volume17
    journal issue5
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000793
    treeInternational Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian