YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Single Piles Subjected to Evolving Soil Movement

    Source: International Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 004
    Author:
    Wei Dong Guo
    ,
    H. Y. Qin
    ,
    E. H. Ghee
    DOI: 10.1061/(ASCE)GM.1943-5622.0000803
    Publisher: American Society of Civil Engineers
    Abstract: To design passive piles, it is critical to incorporate the impact of lateral soil movement (ws) and its profiles. This may be conveniently realized by using appropriate input parameters and a three-layer analytical model developed by the first author. In this paper, 25 (1-g) model tests were conducted on single piles in sand, subjected to a uniform (U), inverse triangular (T), or arc (A) profile of sand movement, to a final sliding depth (lm) of either 0.29l (l = pile embedment) or 0.57l, respectively. The measured response is subsequently simulated using the three-layer model to gain the input parameters and pile–soil interaction mechanism. The main conclusions (for lm = 0.29l) are as follows. First, the limiting resistance per unit length (at pile-tip level; pb) increases from uniform to inverse triangular and further to arc movement profiles at an increasing magnitude of ws. These profiles may be superimposed together to mimic evolving soil movement profiles. Second, the pb attains 30−60% of that on laterally loaded piles and increases by 22−60% owing to the vertical load. The pb is proportional to the ratio of pile-head displacement (wg) over the soil movement. The on-pile pressure is larger on smaller diameter piles. Third, the thrust taken by piles reduces by 50% from a uniform to a linearly increasing modulus. The bending moment (at approximately 4 times larger movement) is 2.3−7.5 times larger under the T movement (worst-case scenario) than those induced under U movement. Bending capacity based on wg = 10 mm needs to be approximately tripled to warrant the safety of passive piles at a rotation angle of 5°. Finally, moving soil imposes rotational restraining and reduces bending moment and pile displacement. It may push the piles to a wg of 1.5d (d = pile diameter) without failure. For the deep sliding of 0.57l, the pb values may be doubled, and the arc profile may inflict the worst-case scenario as well. The results from model tests work well for three instrumented piles in glacial tills and clay, respectively, independent of evolving soil movement profiles.
    • Download: (12.97Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Single Piles Subjected to Evolving Soil Movement

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4240034
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorWei Dong Guo
    contributor authorH. Y. Qin
    contributor authorE. H. Ghee
    date accessioned2017-12-16T09:12:56Z
    date available2017-12-16T09:12:56Z
    date issued2017
    identifier other%28ASCE%29GM.1943-5622.0000803.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4240034
    description abstractTo design passive piles, it is critical to incorporate the impact of lateral soil movement (ws) and its profiles. This may be conveniently realized by using appropriate input parameters and a three-layer analytical model developed by the first author. In this paper, 25 (1-g) model tests were conducted on single piles in sand, subjected to a uniform (U), inverse triangular (T), or arc (A) profile of sand movement, to a final sliding depth (lm) of either 0.29l (l = pile embedment) or 0.57l, respectively. The measured response is subsequently simulated using the three-layer model to gain the input parameters and pile–soil interaction mechanism. The main conclusions (for lm = 0.29l) are as follows. First, the limiting resistance per unit length (at pile-tip level; pb) increases from uniform to inverse triangular and further to arc movement profiles at an increasing magnitude of ws. These profiles may be superimposed together to mimic evolving soil movement profiles. Second, the pb attains 30−60% of that on laterally loaded piles and increases by 22−60% owing to the vertical load. The pb is proportional to the ratio of pile-head displacement (wg) over the soil movement. The on-pile pressure is larger on smaller diameter piles. Third, the thrust taken by piles reduces by 50% from a uniform to a linearly increasing modulus. The bending moment (at approximately 4 times larger movement) is 2.3−7.5 times larger under the T movement (worst-case scenario) than those induced under U movement. Bending capacity based on wg = 10 mm needs to be approximately tripled to warrant the safety of passive piles at a rotation angle of 5°. Finally, moving soil imposes rotational restraining and reduces bending moment and pile displacement. It may push the piles to a wg of 1.5d (d = pile diameter) without failure. For the deep sliding of 0.57l, the pb values may be doubled, and the arc profile may inflict the worst-case scenario as well. The results from model tests work well for three instrumented piles in glacial tills and clay, respectively, independent of evolving soil movement profiles.
    publisherAmerican Society of Civil Engineers
    titleModeling Single Piles Subjected to Evolving Soil Movement
    typeJournal Paper
    journal volume17
    journal issue4
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000803
    treeInternational Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian