YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Formulation of Anisotropic Strength Criteria for Cohesionless Granular Materials

    Source: International Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 007
    Author:
    Wei Cao
    ,
    Rui Wang
    ,
    Jian-Min Zhang
    DOI: 10.1061/(ASCE)GM.1943-5622.0000861
    Publisher: American Society of Civil Engineers
    Abstract: Granular materials deposited under gravity usually exhibit inherent fabric anisotropy, which leads to profoundly varying strength under different loading directions in regard to the bedding plane that has been observed through experiments and numerical simulations. Classical isotropic strength criteria that are only stress dependent cannot describe such anisotropy in strength. This study introduces an anisotropic strength variable Λ that measures the distance between the bedding plane and the maximum shear stress ratio plane, thus incorporating both the stress tensor and the material orientation, and guarantees objectivity. The strength variable Λ is adopted to construct a general formulation that allows for the extension of many existing isotropic strength criteria to become anisotropic. The formulation requires only the following two parameters: kf0, reflecting the minimum strength of the material, and a, reflecting the intensity of inherent anisotropy. The two parameters can be conveniently calibrated. The proposed strength criteria formulation is validated against both physical tests and discrete-element method (DEM) simulations on various granular materials, showing its capability in describing the anisotropic strength. The anisotropic strength criteria formulation is applied to analysis of passive earth pressure to showcase the significance that considerations for strength anisotropy could make to geotechnical design.
    • Download: (2.117Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Formulation of Anisotropic Strength Criteria for Cohesionless Granular Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4239973
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorWei Cao
    contributor authorRui Wang
    contributor authorJian-Min Zhang
    date accessioned2017-12-16T09:12:40Z
    date available2017-12-16T09:12:40Z
    date issued2017
    identifier other%28ASCE%29GM.1943-5622.0000861.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4239973
    description abstractGranular materials deposited under gravity usually exhibit inherent fabric anisotropy, which leads to profoundly varying strength under different loading directions in regard to the bedding plane that has been observed through experiments and numerical simulations. Classical isotropic strength criteria that are only stress dependent cannot describe such anisotropy in strength. This study introduces an anisotropic strength variable Λ that measures the distance between the bedding plane and the maximum shear stress ratio plane, thus incorporating both the stress tensor and the material orientation, and guarantees objectivity. The strength variable Λ is adopted to construct a general formulation that allows for the extension of many existing isotropic strength criteria to become anisotropic. The formulation requires only the following two parameters: kf0, reflecting the minimum strength of the material, and a, reflecting the intensity of inherent anisotropy. The two parameters can be conveniently calibrated. The proposed strength criteria formulation is validated against both physical tests and discrete-element method (DEM) simulations on various granular materials, showing its capability in describing the anisotropic strength. The anisotropic strength criteria formulation is applied to analysis of passive earth pressure to showcase the significance that considerations for strength anisotropy could make to geotechnical design.
    publisherAmerican Society of Civil Engineers
    titleFormulation of Anisotropic Strength Criteria for Cohesionless Granular Materials
    typeJournal Paper
    journal volume17
    journal issue7
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000861
    treeInternational Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian