YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Solution of Single Pile Subjected to Torsional Cyclic Load

    Source: International Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 008
    Author:
    Sudip Basack
    ,
    Sanjay Nimbalkar
    DOI: 10.1061/(ASCE)GM.1943-5622.0000905
    Publisher: American Society of Civil Engineers
    Abstract: Large structures, such as offshore platforms, wind turbine foundations, wide buildings, bridges, and railway granular embankments, are often supported by pile foundations. These structures are usually subjected to large cyclic loads (in axial, lateral, and torsional modes) arising from actions of waves, ship impacts, or moving trains. Significant torsional cyclic forces can be transferred to the foundation piles due to the eccentricity of the lateral loads. In the past, several theoretical and experimental investigations were carried out on piles under axial and lateral cyclic loads; however, study of the influence of torsional cyclic loads on pile foundations is rather limited. This paper presents a novel numerical model based on the boundary element approach to analyze the response of a single, vertical, floating pile subjected to torsional cyclic load. The nonlinear stress-strain response of soil is incorporated, and the pile material was idealized as elastic-perfectly plastic. The effect of progressive degradation of soil strength and stiffness under cyclic stress reversal is incorporated in the numerical method. Apart from predicting the degradation of torsional pile–soil interactive performance, the profiles for shear stress and angle of twist are also captured by the proposed solution. Validation of the model indicates the suitability and accuracy of the proposed solutions. The frequency, amplitude, and number of cycles play significant roles in torsional cyclic response of piles. The proposed model is also applied successfully to selected case studies on single piles under torsional cyclic loading, and important conclusions are drawn from there.
    • Download: (1.393Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Solution of Single Pile Subjected to Torsional Cyclic Load

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4239926
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorSudip Basack
    contributor authorSanjay Nimbalkar
    date accessioned2017-12-16T09:12:24Z
    date available2017-12-16T09:12:24Z
    date issued2017
    identifier other%28ASCE%29GM.1943-5622.0000905.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4239926
    description abstractLarge structures, such as offshore platforms, wind turbine foundations, wide buildings, bridges, and railway granular embankments, are often supported by pile foundations. These structures are usually subjected to large cyclic loads (in axial, lateral, and torsional modes) arising from actions of waves, ship impacts, or moving trains. Significant torsional cyclic forces can be transferred to the foundation piles due to the eccentricity of the lateral loads. In the past, several theoretical and experimental investigations were carried out on piles under axial and lateral cyclic loads; however, study of the influence of torsional cyclic loads on pile foundations is rather limited. This paper presents a novel numerical model based on the boundary element approach to analyze the response of a single, vertical, floating pile subjected to torsional cyclic load. The nonlinear stress-strain response of soil is incorporated, and the pile material was idealized as elastic-perfectly plastic. The effect of progressive degradation of soil strength and stiffness under cyclic stress reversal is incorporated in the numerical method. Apart from predicting the degradation of torsional pile–soil interactive performance, the profiles for shear stress and angle of twist are also captured by the proposed solution. Validation of the model indicates the suitability and accuracy of the proposed solutions. The frequency, amplitude, and number of cycles play significant roles in torsional cyclic response of piles. The proposed model is also applied successfully to selected case studies on single piles under torsional cyclic loading, and important conclusions are drawn from there.
    publisherAmerican Society of Civil Engineers
    titleNumerical Solution of Single Pile Subjected to Torsional Cyclic Load
    typeJournal Paper
    journal volume17
    journal issue8
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000905
    treeInternational Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian