YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Three-Dimensional Discrete-Element Method Analysis of Stresses and Deformations of a Single Geogrid-Encased Stone Column

    Source: International Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 009
    Author:
    Meixiang Gu
    ,
    Jie Han
    ,
    Minghua Zhao
    DOI: 10.1061/(ASCE)GM.1943-5622.0000952
    Publisher: American Society of Civil Engineers
    Abstract: The discrete-element method (DEM) has been successfully used to simulate the behavior of granular material and was used in this study to analyze the stresses and deformations of a single geogrid-encased stone column under unconfined compression. The aggregate was simulated using graded particles of diameters ranging from 30 to 50 mm, and a biaxial geogrid as an encasement material was simulated using parallel-bonded particles. The micromechanical properties of the aggregate were determined using numerical triaxial tests at various confining stresses. The tensile properties of the geogrid were determined by a multirib tensile test, and the flexural rigidity of the geogrid was calibrated by a flexural bending test. This study investigated the changes in vertical and radial stresses and porosities, the contact-force distribution and particle movements within the aggregate, and the deformation and tensile force in the geogrid encasement. The load-displacement response of the DEM model of the geogrid-encased aggregate sample closely agreed with the experimental results. The coefficient of radial stress, defined as the ratio of vertical stress to radial stress within the aggregate, varied from 0.6 to 2.7 during loading where the tensile strength of the geogrid encasement was not fully mobilized. The aggregate showed volumetric contraction at small deformation and then dilation with an increase of deformation. The interlocking effects between the aggregate and the geogrid were observed at the initial state. The particles within the middle portion of the column were more likely to slip than those at other locations.
    • Download: (3.605Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Three-Dimensional Discrete-Element Method Analysis of Stresses and Deformations of a Single Geogrid-Encased Stone Column

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4239875
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorMeixiang Gu
    contributor authorJie Han
    contributor authorMinghua Zhao
    date accessioned2017-12-16T09:12:10Z
    date available2017-12-16T09:12:10Z
    date issued2017
    identifier other%28ASCE%29GM.1943-5622.0000952.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4239875
    description abstractThe discrete-element method (DEM) has been successfully used to simulate the behavior of granular material and was used in this study to analyze the stresses and deformations of a single geogrid-encased stone column under unconfined compression. The aggregate was simulated using graded particles of diameters ranging from 30 to 50 mm, and a biaxial geogrid as an encasement material was simulated using parallel-bonded particles. The micromechanical properties of the aggregate were determined using numerical triaxial tests at various confining stresses. The tensile properties of the geogrid were determined by a multirib tensile test, and the flexural rigidity of the geogrid was calibrated by a flexural bending test. This study investigated the changes in vertical and radial stresses and porosities, the contact-force distribution and particle movements within the aggregate, and the deformation and tensile force in the geogrid encasement. The load-displacement response of the DEM model of the geogrid-encased aggregate sample closely agreed with the experimental results. The coefficient of radial stress, defined as the ratio of vertical stress to radial stress within the aggregate, varied from 0.6 to 2.7 during loading where the tensile strength of the geogrid encasement was not fully mobilized. The aggregate showed volumetric contraction at small deformation and then dilation with an increase of deformation. The interlocking effects between the aggregate and the geogrid were observed at the initial state. The particles within the middle portion of the column were more likely to slip than those at other locations.
    publisherAmerican Society of Civil Engineers
    titleThree-Dimensional Discrete-Element Method Analysis of Stresses and Deformations of a Single Geogrid-Encased Stone Column
    typeJournal Paper
    journal volume17
    journal issue9
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000952
    treeInternational Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian