YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seismic Sliding Analysis of Sandy Slopes Subjected to Pore-Water Pressure Buildup

    Source: International Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 011
    Author:
    Yaser Jafarian
    ,
    Ali Lashgari
    DOI: 10.1061/(ASCE)GM.1943-5622.0001013
    Publisher: American Society of Civil Engineers
    Abstract: Pore-water pressure buildup strongly affects seismic permanent displacement of the slopes constituted from saturated soils. Previous attempts simulating the generation of excess pore pressures (or decrease in soil strength) have been applied in the sliding block models, but the models assumed a rigid block. In the present study, a simplified procedure is presented to account for this effect in sliding block analysis. A correlation between excess pore pressure ratio and cumulative absolute velocity is obtained through the fully coupled solid-fluid effective stress analysis of level ground. The effect of pore-water pressure variation on critical acceleration is investigated in this paper, and the available Newmarkian sliding block methods, such as the rigid block, decoupled, and coupled approaches, are modified to estimate seismic permanent displacement in the presence of excess pore pressure buildup. The present study is original because the method not only simulates the generation of excess pore pressures but also considers the coupled procedure. In addition, centrifuge test results of lateral spreading in the infinite sloping ground are used to demonstrate that the proposed modification considerably improves prediction of seismic sliding displacement. The results clearly demonstrate that ignored pore-water pressure buildup in sliding block procedures can lead to unconservative estimates of seismic permanent displacements during seismic loading.
    • Download: (3.549Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seismic Sliding Analysis of Sandy Slopes Subjected to Pore-Water Pressure Buildup

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4239823
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorYaser Jafarian
    contributor authorAli Lashgari
    date accessioned2017-12-16T09:11:52Z
    date available2017-12-16T09:11:52Z
    date issued2017
    identifier other%28ASCE%29GM.1943-5622.0001013.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4239823
    description abstractPore-water pressure buildup strongly affects seismic permanent displacement of the slopes constituted from saturated soils. Previous attempts simulating the generation of excess pore pressures (or decrease in soil strength) have been applied in the sliding block models, but the models assumed a rigid block. In the present study, a simplified procedure is presented to account for this effect in sliding block analysis. A correlation between excess pore pressure ratio and cumulative absolute velocity is obtained through the fully coupled solid-fluid effective stress analysis of level ground. The effect of pore-water pressure variation on critical acceleration is investigated in this paper, and the available Newmarkian sliding block methods, such as the rigid block, decoupled, and coupled approaches, are modified to estimate seismic permanent displacement in the presence of excess pore pressure buildup. The present study is original because the method not only simulates the generation of excess pore pressures but also considers the coupled procedure. In addition, centrifuge test results of lateral spreading in the infinite sloping ground are used to demonstrate that the proposed modification considerably improves prediction of seismic sliding displacement. The results clearly demonstrate that ignored pore-water pressure buildup in sliding block procedures can lead to unconservative estimates of seismic permanent displacements during seismic loading.
    publisherAmerican Society of Civil Engineers
    titleSeismic Sliding Analysis of Sandy Slopes Subjected to Pore-Water Pressure Buildup
    typeJournal Paper
    journal volume17
    journal issue11
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0001013
    treeInternational Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian