Show simple item record

contributor authorXiaohui Sun
contributor authorJie Han
contributor authorRyan Corey
date accessioned2017-12-16T09:10:19Z
date available2017-12-16T09:10:19Z
date issued2017
identifier other%28ASCE%29GT.1943-5606.0001761.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4239490
description abstractGeogrids have been increasingly used for stabilization of base courses and subgrade. In the design of the geogrid-stabilized roads, the benefit of geogrids is usually quantified by a modulus improvement factor (MIF) so that the geogrid-stabilized base course can be simplified as a nonstabilized base course with an equivalent modulus. In previous studies, the equivalent moduli of base courses were usually back-calculated by using the measured vertical stresses and/or resilient deformations of the road surface. However, these responses (i.e., stress or resilient deformation) fail to or cannot fully capture the benefits of the geogrid in reducing the permanent deformation of roads. In this study, the equivalent moduli of the geogrid-stabilized base courses were back-calculated by using the measured permanent deformations. Burmister’s layered elastic solution and a modified mechanistic empirical pavement design guide (MEPDG) soil damage model were used for this back-calculation. The results show that the MIFs of the geogrid-stabilized bases determined by using the measured permanent deformations were mostly higher than those determined by using the measured vertical stresses at the interface. The equivalent modulus of the geogrid-stabilized base back-calculated by using the permanent deformation captured the benefits of the geogrid at both the loading and unloading stages.
publisherAmerican Society of Civil Engineers
titleEquivalent Modulus of Geogrid-Stabilized Granular Base Back-Calculated Using Permanent Deformation
typeJournal Paper
journal volume143
journal issue9
journal titleJournal of Geotechnical and Geoenvironmental Engineering
identifier doi10.1061/(ASCE)GT.1943-5606.0001761
treeJournal of Geotechnical and Geoenvironmental Engineering:;2017:;Volume ( 143 ):;issue: 009
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record