YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ensemble Wavelet-Support Vector Machine Approach for Prediction of Suspended Sediment Load Using Hydrometeorological Data

    Source: Journal of Hydrologic Engineering:;2017:;Volume ( 022 ):;issue: 007
    Author:
    Sushil Kumar Himanshu
    ,
    Ashish Pandey
    ,
    Basant Yadav
    DOI: 10.1061/(ASCE)HE.1943-5584.0001516
    Publisher: American Society of Civil Engineers
    Abstract: Explicit prediction of the suspended sediment loads in rivers or streams is very crucial for sustainable water resources and environmental systems. Suspended sediments are a governing factor for the design and operation of hydraulic structures, like canals, diversions and dams. In recent decades, to model hydrological phenomena which are complex in nature the machine learning models are used commonly. In the present study, support vector machine (SVM) with wavelet transform (WASVM) has been employed for prediction of daily suspended sediment load (SL) for two south Indian watersheds (Marol and Muneru) using hydrometeorological data. A 40-year daily observed data (1972–2011) have been used for the analysis, where past SL, streamflow (Q), and rainfall (R) data were used as the model inputs, and SL was the model output. Using conventional correlation coefficient analysis between input and output variables, the best input of WASVM model was identified. The reliability of SVM and WASVM models were evaluated on the basis of different performance criteria, i.e., coefficient of determination (R2), root mean square error (RMSE), normalized mean square error (NMSE), and Nash-Sutcliffe coefficient (NS). Initially, 1-day ahead SL prediction was performed using the best WASVM model. The results showed that, 1-day predictions were very precise, showing a close agreement with the observed SL data (R2=0.94, NS=0.94 for the Marol watershed, and R2=0.77, NS=0.77 for the Muneru watershed) in the testing period. The same WASVM model was then used for the prediction of SL for the higher lead periods. The NMSE value for the Marol watershed was found as low as 0.06 for 1-day ahead prediction, and increases subsequently as 0.29, 0.46, and 0.70 for 3-, 6-, and 9-day higher leads, respectively. Likewise, for the Muneru watershed, the NMSE value was found as low as 0.21 for 1-day ahead prediction, and increases subsequently as 0.42, 0.53, and 0.68 for 3-, 6-, and 9-day higher leads, respectively. Further, the model was evaluated on the basis of its capability of predicting peak SL and cumulative SL for 1- to 6-day leads. The statistical analysis shows that the developed WASVM model can predict the target value successfully up to a 6-day lead and is not suitable for higher lead specifically in the selected watersheds having similar hydroclimatic conditions like the ones selected in this study. Predictions by the WASVM model were found significantly superior to the ones obtained by the conventional SVM model. The results revealed that the WASVM model provides a very good accuracy in predicting SL and can be used as an effective forecasting tool for hydrological applications.
    • Download: (1.676Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ensemble Wavelet-Support Vector Machine Approach for Prediction of Suspended Sediment Load Using Hydrometeorological Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4239228
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorSushil Kumar Himanshu
    contributor authorAshish Pandey
    contributor authorBasant Yadav
    date accessioned2017-12-16T09:09:04Z
    date available2017-12-16T09:09:04Z
    date issued2017
    identifier other%28ASCE%29HE.1943-5584.0001516.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4239228
    description abstractExplicit prediction of the suspended sediment loads in rivers or streams is very crucial for sustainable water resources and environmental systems. Suspended sediments are a governing factor for the design and operation of hydraulic structures, like canals, diversions and dams. In recent decades, to model hydrological phenomena which are complex in nature the machine learning models are used commonly. In the present study, support vector machine (SVM) with wavelet transform (WASVM) has been employed for prediction of daily suspended sediment load (SL) for two south Indian watersheds (Marol and Muneru) using hydrometeorological data. A 40-year daily observed data (1972–2011) have been used for the analysis, where past SL, streamflow (Q), and rainfall (R) data were used as the model inputs, and SL was the model output. Using conventional correlation coefficient analysis between input and output variables, the best input of WASVM model was identified. The reliability of SVM and WASVM models were evaluated on the basis of different performance criteria, i.e., coefficient of determination (R2), root mean square error (RMSE), normalized mean square error (NMSE), and Nash-Sutcliffe coefficient (NS). Initially, 1-day ahead SL prediction was performed using the best WASVM model. The results showed that, 1-day predictions were very precise, showing a close agreement with the observed SL data (R2=0.94, NS=0.94 for the Marol watershed, and R2=0.77, NS=0.77 for the Muneru watershed) in the testing period. The same WASVM model was then used for the prediction of SL for the higher lead periods. The NMSE value for the Marol watershed was found as low as 0.06 for 1-day ahead prediction, and increases subsequently as 0.29, 0.46, and 0.70 for 3-, 6-, and 9-day higher leads, respectively. Likewise, for the Muneru watershed, the NMSE value was found as low as 0.21 for 1-day ahead prediction, and increases subsequently as 0.42, 0.53, and 0.68 for 3-, 6-, and 9-day higher leads, respectively. Further, the model was evaluated on the basis of its capability of predicting peak SL and cumulative SL for 1- to 6-day leads. The statistical analysis shows that the developed WASVM model can predict the target value successfully up to a 6-day lead and is not suitable for higher lead specifically in the selected watersheds having similar hydroclimatic conditions like the ones selected in this study. Predictions by the WASVM model were found significantly superior to the ones obtained by the conventional SVM model. The results revealed that the WASVM model provides a very good accuracy in predicting SL and can be used as an effective forecasting tool for hydrological applications.
    publisherAmerican Society of Civil Engineers
    titleEnsemble Wavelet-Support Vector Machine Approach for Prediction of Suspended Sediment Load Using Hydrometeorological Data
    typeJournal Paper
    journal volume22
    journal issue7
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001516
    treeJournal of Hydrologic Engineering:;2017:;Volume ( 022 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian