YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Deterministic Simulation of Mildly Intermittent Hydrologic Records

    Source: Journal of Hydrologic Engineering:;2017:;Volume ( 022 ):;issue: 008
    Author:
    Mahesh L. Maskey
    ,
    Carlos E. Puente
    ,
    Bellie Sivakumar
    ,
    Andrea Cortis
    DOI: 10.1061/(ASCE)HE.1943-5584.0001531
    Publisher: American Society of Civil Engineers
    Abstract: Application of a deterministic geometric approach for the simulation of mildly intermittent hydrologic data, exhibiting a few peaks and displaying relatively slowly rising and falling limbs and yielding slowly decaying autocorrelation functions that reach a zero value at a lag that is at least 5% of the length of the records, is presented. Specifically, adaptations of the original fractal-multifractal (FM) method and an extension, yielding more general attractors instead of fractal functions (and relying on five and eight parameters, respectively), are advanced in order to simulate (1) continuous rainfall events gathered every few seconds or minutes and lasting a few hours, and (2) continuous streamflow records measured at the daily scale and encompassing a year. It is shown, using as case studies one rainfall event in Boston, three storms gathered in Iowa City, and 4 years of streamflow records at the Sacramento River in California, all having distinct geometries, that the (computationally efficient) FM approach is capable of closely preserving either the complete record’s autocorrelation function or the data’s whole histogram (including moments), and even both, resulting in suitable rainfall and streamflow simulations, whose features and textures are similar to those of the observed data sets. The study hence establishes, for the first time, the possibility of parsimoniously simulating hydrologic sets in time in a deterministic manner, as a novel way to supplement stochastic frameworks.
    • Download: (2.047Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Deterministic Simulation of Mildly Intermittent Hydrologic Records

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4239214
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorMahesh L. Maskey
    contributor authorCarlos E. Puente
    contributor authorBellie Sivakumar
    contributor authorAndrea Cortis
    date accessioned2017-12-16T09:09:00Z
    date available2017-12-16T09:09:00Z
    date issued2017
    identifier other%28ASCE%29HE.1943-5584.0001531.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4239214
    description abstractApplication of a deterministic geometric approach for the simulation of mildly intermittent hydrologic data, exhibiting a few peaks and displaying relatively slowly rising and falling limbs and yielding slowly decaying autocorrelation functions that reach a zero value at a lag that is at least 5% of the length of the records, is presented. Specifically, adaptations of the original fractal-multifractal (FM) method and an extension, yielding more general attractors instead of fractal functions (and relying on five and eight parameters, respectively), are advanced in order to simulate (1) continuous rainfall events gathered every few seconds or minutes and lasting a few hours, and (2) continuous streamflow records measured at the daily scale and encompassing a year. It is shown, using as case studies one rainfall event in Boston, three storms gathered in Iowa City, and 4 years of streamflow records at the Sacramento River in California, all having distinct geometries, that the (computationally efficient) FM approach is capable of closely preserving either the complete record’s autocorrelation function or the data’s whole histogram (including moments), and even both, resulting in suitable rainfall and streamflow simulations, whose features and textures are similar to those of the observed data sets. The study hence establishes, for the first time, the possibility of parsimoniously simulating hydrologic sets in time in a deterministic manner, as a novel way to supplement stochastic frameworks.
    publisherAmerican Society of Civil Engineers
    titleDeterministic Simulation of Mildly Intermittent Hydrologic Records
    typeJournal Paper
    journal volume22
    journal issue8
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001531
    treeJournal of Hydrologic Engineering:;2017:;Volume ( 022 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian