YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Independent Validation of the SWMM Green Roof Module

    Source: Journal of Hydrologic Engineering:;2017:;Volume ( 022 ):;issue: 009
    Author:
    Zhangjie Peng
    ,
    Virginia Stovin
    DOI: 10.1061/(ASCE)HE.1943-5584.0001558
    Publisher: American Society of Civil Engineers
    Abstract: Green roofs are a popular sustainable drainage systems technology. They provide multiple benefits, amongst which the retention of rainfall and detention of runoff are of particular interest to stormwater engineers. The hydrological performance of green roofs has been represented in various models, including the Storm Water Management Model (SWMM). The latest version of SWMM includes a new low-impact development green roof module, which makes it possible to model the hydrological performance of a green roof by directly defining the physical parameters of a green roof’s three layers. However, to date, no study has validated the capability of this module for representing the hydrological performance of an extensive green roof in response to actual rainfall events. In this study, data from a previously monitored extensive green roof test bed have been used to validate the SWMM green roof module for both long-term (173 events over a year) and short-term (per-event) simulations. With only 0.357% difference between measured and modeled annual retention, the uncalibrated model provided good estimates of total annual retention, but the modeled runoff depths deviated significantly from the measured data at certain times (particularly during summer) in the year. Retention results improved [with the difference between modeled and measured annual retention decreasing to 0.169% and the Nash–Sutcliffe model efficiency (NSME) coefficient for per-event rainfall depth reaching 0.948] when reductions in actual evapotranspiration (ET) due to reduced substrate moisture availability during prolonged dry conditions were used to provide revised estimates of monthly ET. However, this aspect of the model’s performance is ultimately limited by the failure to account for the influence of substrate moisture on actual ET rates. With significant differences existing between measured and simulated runoff and NSME coefficients below 0.5, the uncalibrated model failed to provide reasonable predictions of the green roof’s detention performance, although this was significantly improved through calibration. To precisely model the hydrological behavior of an extensive green roof with a plastic board drainage layer, some of the modeling structures in SWMM green roof module require further refinement.
    • Download: (2.218Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Independent Validation of the SWMM Green Roof Module

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4239188
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorZhangjie Peng
    contributor authorVirginia Stovin
    date accessioned2017-12-16T09:08:54Z
    date available2017-12-16T09:08:54Z
    date issued2017
    identifier other%28ASCE%29HE.1943-5584.0001558.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4239188
    description abstractGreen roofs are a popular sustainable drainage systems technology. They provide multiple benefits, amongst which the retention of rainfall and detention of runoff are of particular interest to stormwater engineers. The hydrological performance of green roofs has been represented in various models, including the Storm Water Management Model (SWMM). The latest version of SWMM includes a new low-impact development green roof module, which makes it possible to model the hydrological performance of a green roof by directly defining the physical parameters of a green roof’s three layers. However, to date, no study has validated the capability of this module for representing the hydrological performance of an extensive green roof in response to actual rainfall events. In this study, data from a previously monitored extensive green roof test bed have been used to validate the SWMM green roof module for both long-term (173 events over a year) and short-term (per-event) simulations. With only 0.357% difference between measured and modeled annual retention, the uncalibrated model provided good estimates of total annual retention, but the modeled runoff depths deviated significantly from the measured data at certain times (particularly during summer) in the year. Retention results improved [with the difference between modeled and measured annual retention decreasing to 0.169% and the Nash–Sutcliffe model efficiency (NSME) coefficient for per-event rainfall depth reaching 0.948] when reductions in actual evapotranspiration (ET) due to reduced substrate moisture availability during prolonged dry conditions were used to provide revised estimates of monthly ET. However, this aspect of the model’s performance is ultimately limited by the failure to account for the influence of substrate moisture on actual ET rates. With significant differences existing between measured and simulated runoff and NSME coefficients below 0.5, the uncalibrated model failed to provide reasonable predictions of the green roof’s detention performance, although this was significantly improved through calibration. To precisely model the hydrological behavior of an extensive green roof with a plastic board drainage layer, some of the modeling structures in SWMM green roof module require further refinement.
    publisherAmerican Society of Civil Engineers
    titleIndependent Validation of the SWMM Green Roof Module
    typeJournal Paper
    journal volume22
    journal issue9
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0001558
    treeJournal of Hydrologic Engineering:;2017:;Volume ( 022 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian