YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reference (Potential) Evapotranspiration. I: Comparison of Temperature, Radiation, and Combination-Based Energy Balance Equations in Humid, Subhumid, Arid, Semiarid, and Mediterranean-Type Climates

    Source: Journal of Irrigation and Drainage Engineering:;2016:;Volume ( 142 ):;issue: 004
    Author:
    M. Gabriela Arellano
    ,
    Suat Irmak
    DOI: 10.1061/(ASCE)IR.1943-4774.0000978
    Publisher: American Society of Civil Engineers
    Abstract: Grass-reference (potential) evapotranspiration (ETo) is often used in climate change studies to evaluate potential impacts of climate change on hydrologic balances and vegetation response. In this process, empirical temperature or radiation-based empirical equations are often used because of a lack of long-term climate data to solve the combination-based energy balance equations, but this may result in false determinations of trends and magnitudes of water use. To quantify potential differences associated with using such empirical models with respect to the FAO56 Penman-Monteith method (PM), various ETo models were evaluated in five locations that have significantly different climatic characteristics [subhumid, semiarid, arid, humid (subtropical), and Mediterranean-type] in Nebraska (Clay Center and Scottsbluff), Florida (Gainesville), Arizona (Phoenix), and California (Davis). In general, the performance of most methods not only varied with climatic conditions, but also with the time step used (i.e., daily, monthly, and long-term cumulative basis). Combination methods provided lower root mean squared difference (RMSD) in all locations due to accounting for aerodynamic and energy terms of the surface energy balance. On a daily time step, the FAO24 Penman equation provided the lowest RMSD values (0.35, 0.42, 0.23, 0.37, and 0.37  mm/d for Davis, Gainesville, Phoenix Clay Center, and Scottsbluff, respectively). In the most arid location (Phoenix) all combination methods overestimated ETo relative to the FAO56-PM, whereas the FAO24 Penman method performed best in Phoenix as well as in humid (Gainesville) and windy (Clay Center) locations. However, at wind speed values higher than 4  m/s, FAO24 Penman estimates were up to 40% higher than the FAO56-PM estimates. In general, 1948 Penman provided higher overestimations when compared to FAO56-PM for days with solar radiation values below 10  MJ/m2/d. Among temperature methods, Hargreaves method positioned first among the temperature methods in three of five locations and its RMSD of estimates in driest and most humid climates (Phoenix and Gainesville) were smallest. Most of the radiation methods underestimated in all the locations; with the exception of Gainesville, where the only method that presented this behavior was Makkink. Substantial differences were observed when comparing methods’ cumulative annual ETo to the FAO56-PM values. The performance of some of the methods differed substantially with location. For example, the FAO24 Radiation method ranked first in Davis, Clay Center, and Scottsbluff. In the extremely dry and windy location of Scottsbluff it also ranked first overall in the cumulative analysis, and second at Clay Center. This method performed poorly in Phoenix, where it ranked last on daily analysis. The results of this study can provide a reference in terms of potential errors associated with using various combination, temperature, and radiation-based empirical models in estimating ETo with respect to the FAO56-PM in various climatic conditions for different time steps.
    • Download: (22.70Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reference (Potential) Evapotranspiration. I: Comparison of Temperature, Radiation, and Combination-Based Energy Balance Equations in Humid, Subhumid, Arid, Semiarid, and Mediterranean-Type Climates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4238778
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorM. Gabriela Arellano
    contributor authorSuat Irmak
    date accessioned2017-12-16T09:07:03Z
    date available2017-12-16T09:07:03Z
    date issued2016
    identifier other%28ASCE%29IR.1943-4774.0000978.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4238778
    description abstractGrass-reference (potential) evapotranspiration (ETo) is often used in climate change studies to evaluate potential impacts of climate change on hydrologic balances and vegetation response. In this process, empirical temperature or radiation-based empirical equations are often used because of a lack of long-term climate data to solve the combination-based energy balance equations, but this may result in false determinations of trends and magnitudes of water use. To quantify potential differences associated with using such empirical models with respect to the FAO56 Penman-Monteith method (PM), various ETo models were evaluated in five locations that have significantly different climatic characteristics [subhumid, semiarid, arid, humid (subtropical), and Mediterranean-type] in Nebraska (Clay Center and Scottsbluff), Florida (Gainesville), Arizona (Phoenix), and California (Davis). In general, the performance of most methods not only varied with climatic conditions, but also with the time step used (i.e., daily, monthly, and long-term cumulative basis). Combination methods provided lower root mean squared difference (RMSD) in all locations due to accounting for aerodynamic and energy terms of the surface energy balance. On a daily time step, the FAO24 Penman equation provided the lowest RMSD values (0.35, 0.42, 0.23, 0.37, and 0.37  mm/d for Davis, Gainesville, Phoenix Clay Center, and Scottsbluff, respectively). In the most arid location (Phoenix) all combination methods overestimated ETo relative to the FAO56-PM, whereas the FAO24 Penman method performed best in Phoenix as well as in humid (Gainesville) and windy (Clay Center) locations. However, at wind speed values higher than 4  m/s, FAO24 Penman estimates were up to 40% higher than the FAO56-PM estimates. In general, 1948 Penman provided higher overestimations when compared to FAO56-PM for days with solar radiation values below 10  MJ/m2/d. Among temperature methods, Hargreaves method positioned first among the temperature methods in three of five locations and its RMSD of estimates in driest and most humid climates (Phoenix and Gainesville) were smallest. Most of the radiation methods underestimated in all the locations; with the exception of Gainesville, where the only method that presented this behavior was Makkink. Substantial differences were observed when comparing methods’ cumulative annual ETo to the FAO56-PM values. The performance of some of the methods differed substantially with location. For example, the FAO24 Radiation method ranked first in Davis, Clay Center, and Scottsbluff. In the extremely dry and windy location of Scottsbluff it also ranked first overall in the cumulative analysis, and second at Clay Center. This method performed poorly in Phoenix, where it ranked last on daily analysis. The results of this study can provide a reference in terms of potential errors associated with using various combination, temperature, and radiation-based empirical models in estimating ETo with respect to the FAO56-PM in various climatic conditions for different time steps.
    publisherAmerican Society of Civil Engineers
    titleReference (Potential) Evapotranspiration. I: Comparison of Temperature, Radiation, and Combination-Based Energy Balance Equations in Humid, Subhumid, Arid, Semiarid, and Mediterranean-Type Climates
    typeJournal Paper
    journal volume142
    journal issue4
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/(ASCE)IR.1943-4774.0000978
    treeJournal of Irrigation and Drainage Engineering:;2016:;Volume ( 142 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian